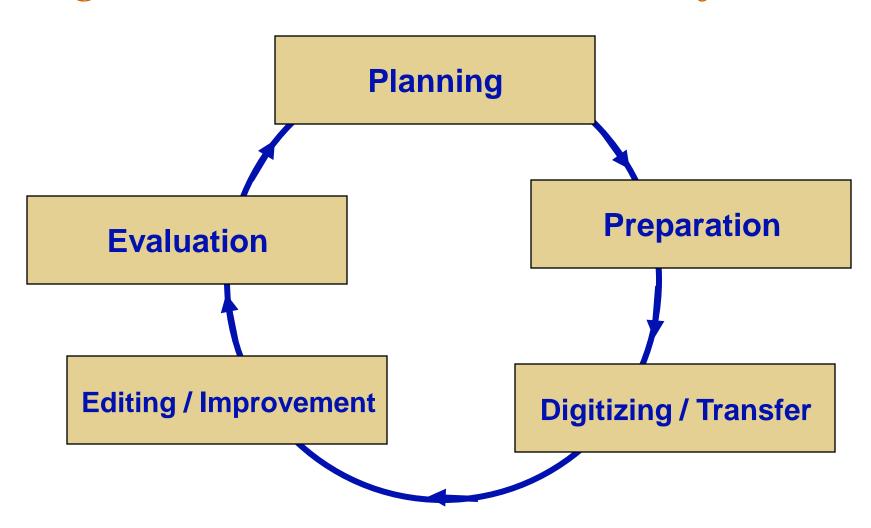


Overview

- Introduction
- Primary data capture
- Secondary data capture
- Data transfer
- Capturing attribute data
- Managing a data capture project
- Error and accuracy


Data Collection

- One of most expensive GIS activities
- Many diverse sources
- Two broad types of collection
 - Data capture (direct collection)
 - Data transfer
- Two broad capture methods
 - Primary (direct measurement)
 - Secondary (indirect derivation)

Data Collection Techniques

	Field/Raster	Object/Vector
Primary	Digital remote sensing images	GPS measurements
	Digital aerial photographs	Survey measurements
Secondary	Scanned maps	Topographic surveys

Primary Data Capture

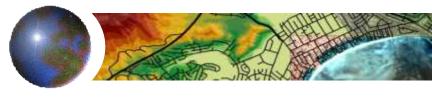
- Capture specifically for GIS use
- Raster remote sensing
 - e.g. SPOT and IKONOS satellites and aerial photography
 - Passive and active sensors
- Resolution is key consideration
 - Spatial
 - Temporal

Vector Primary Data Capture

Surveying

- Locations of objects determines by angle and distance measurements from known locations
- Uses expensive field equipment and crews
- Most accurate method for large scale, small areas

GPS


- Collection of satellites used to fix locations on Earth's surface
- Differential GPS used to improve accuracy

Total Station

Pen Portable PC and GPS

- Data collected for other purposes can be converted for use in GIS
- Raster conversion
 - Scanning of maps, aerial photographs, documents, etc
 - Important scanning parameters are spatial and spectral (bit depth) resolution

Scanner

- Collection of vector objects from maps, photographs, plans, etc.
- Digitizing
 - Manual (table)
 - Heads-up and vectorization
- Photogrammetry the science and technology of making measurements from photographs, etc.

Digitizer

Data Transfer

Buy vs. build is an important question

- Many widely distributed sources of GI
- Clearing Houses
- Available Digital Data

- Nature of Data
 - Topographic Base Data is easier to obtain than Elevation Data, which in turn easier to get than Natural Resource or Census Data
- Scale of Data
 - Obtaining Large Scale Data is more problematic than Small Scale
- Date of Production
 - Recent Data is more difficult to obtain than older data.

- Key principles
 - Clear plan, adequate resources, appropriate funding, and sufficient time
- Fundamental tradeoff between
 - Quality, speed and price
- Two strategies
 - Incremental
 - 'Blitzkrieg' (all at once)
- Alternative resource options
 - In house
 - Specialist external agency

The Role of Error

- Map and attribute data errors are the data producer's responsibility,
 - GIS user must understand error.
- Accuracy and precision of map and attribute data in a GIS affect all other operations, especially when maps are compared across scales.

- positional accuracy
- attribute accuracy
- logical consistency
- completeness
- lineage