

Training/workshop on

"Earthquake Vulnerability and Multi-Hazard Risk Assessment: Geospatial Tools for Rehabilitation and Reconstruction Effort"

Islamabad, Pakistan March 2006

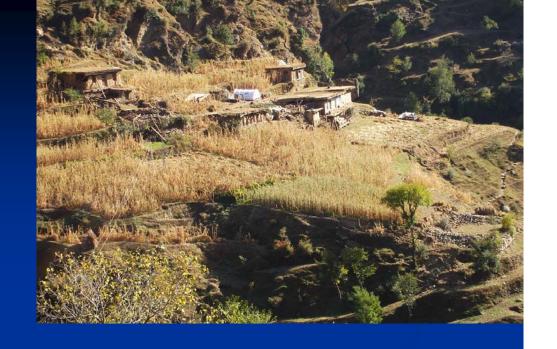
Mapping of Elements at Risk

Samjwal Ratna Bajracharya
International Centre for Integrated Mountain Development (ICIMOD)

Material prepared from Lorena Montoya, Paul Hofste, and Cess van Western, ITC

Contents

- Classifications of residence: example
- Attributes for hazard studies
- Sources of elements at risk
- Mapping elements at risk
 - Footprints
 - Sensors


Hilkot RES1

Traditional Mud-stone-wood structure

Collapsed

Houses in cluster - 100%

isolated houses - about 10%

Hilkot RES2

Light construction with corrugated sheets roof

substandard construction, not complying with the local provisions.

Collapsed 100%

Battal RES3

- Reinforce composite construction, fancy, not complying with the latest code provisions.
- Totally damaged

Hilkot

RES4


Engineered reinforced concrete construction,recently constructed

Building Code

not proper

Proper

Balakot COM

Commercial

Attributes for buildings for earthquake hazard

For instance:

- Structural type
- Construction techniques
- Building materials
- Shape (configuration)
- Height (different heights shake at different frequencies)
- Use (e.g. dwelling, hospital, fire station)
- Proximity to other buildings (pounding)
- Age

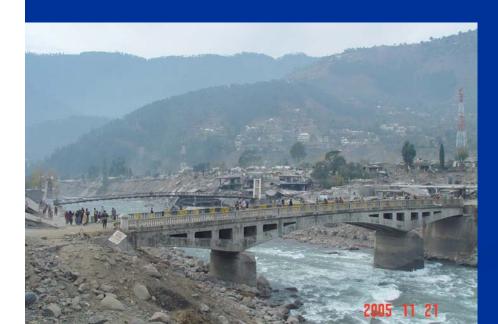
Needed for elements at risk mapping

also in digital format for a GIS

- Footprint maps (urban areas)
- Up-to-date large scale maps (urban areas)
- Maps with administrative boundaries
- Topographic maps
- Aerial photography and/or < 1m resolution satellite imagery</p>
- Lidar data for 3-D modeling (flooding)

Classifications for earthquake vulnerability studies: adapted to local circumstances

Construction type, applied in Lalitpur, Kathmandu valley, Nepal


> Space use (land use), applied in Dehra Dun, India

Conclusions

- Remote sensing can provide building footprints and building height, but the resolution and shadows of satellite images are problematic in high-density areas
- Close sensing (field observation) is needed for attributes that are only observable in the field, or require information from inhabitants
- Disaggregation of population data is required for a good insight into the spatial distribution of population at risk

