Damage Assessment Methodology

An Overview

Purpose

To provide disaster managers with comprehensive, standardized information on the impact of a hazard

Information can be used to set priorities and make management for decisions relating to response to a disaster and to the initial steps leading to recovery.

Damage Assessment

- It is an information-gathering and decisionmaking process
- It should be undertaken in any situation in which the life or well being of persons is being threatened by a disaster event
- It enables immediate needs to be identified and analyzed, and thereby saves lives, minimizes injuries, damages and losses.

Purpose of DA study

- DA is undertaken to produce appropriate and timely assessment reports in order to mount an effective and efficient response
- It should provide sound information for decision-making
- DA formats should facilitate rapid information collection and transmission
- Different stakeholders should be involved in the design of the format

Objectives of Damage Assessment

- Will depend on the type and intensity of the disaster
- Minor/moderate disasters:
 - Estimate total losses (for reporting and policy purposes)
 - Help develop repair/rehabilitation procedures
- Major disasters:
 - Same objectives as for minor/moderate disasters
 - Also assess extent of damage to buildings and other structures (and its geographical distribution)

adpc

Objectives of Damage Assessment

- Short-Term (within a few days):
 - To quickly identify the safe and unsafe buildings
 - To quickly estimate total damage losses (for reporting and policy purposes)
 - To quickly identify status of lifeline buildings and other structures
- Medium-Term (within a few weeks):
 - To assess safety status of doubtful category structures
 - To reassess and quantify damage losses
- Long-Term (few months to years):
 - To help develop rehabilitation/retrofitting procedures
 - To help identify deficiencies in prevalent technical knowledge and its implementation mechanisms

adpc

Damage assessment Islamabad Pakistan

Basic Philosophy of DA

- Should be based on international soundpractices
- Should consider the types of structures prevalent in Gujarat
- Should consider the technical skills likely to be available after a disaster
- Should incorporate experiences from recent disasters, particularly the 2001 earthquake and 1998 cyclone disasters

Damage and Needs Assessment

- Situation (Damage) Assessment <u>What has</u> <u>happened</u> (the effects of the disaster its magnitude and effects on society, the infrastructure and the environment)
- Needs Assessment <u>What Needs to be</u>
 <u>Done</u> (The level and type of assistance required)

Real Time Data

What has happened? (damage assessment)

- Area affected
- Number of people affected
- Mortality & morbidity
- Types of injuries & illnesses
- Characteristics of affected population
- Medical, water, sanitation, nutrition
- Damage to homes & commercial buildings
- Damage to agriculture & food supply system
- Level of local response & capacities
- Level of response by NGOs & other agencies

adpc

An Important Choice

How many reports are required:

- ✓ Flash report?
- Initial report?
- Interim reports?
- Technical reports?
- ✓ Final report?

Assessment Process

- 1. Team activation / and provision of equipment
- 2. Briefing
- 3. Visual Inspections
- 4. Assess results and plan field surveys
- 5. First field surveys of impact and needs

Assessment Process

7. Decide, plan and monitor response

8. Conduct follow-up detailed and specialist surveys

9. Debriefing

10. Lessons learnt

Processes in DANA

- 1. Form assessment team/s
- 2. Develop Standard Operating Procedures
- 3. Team equipment and tools
- 4. Identify information users and needs
- 5. Design survey forms
- 6. Identify data collection methods
- 7. Standard briefing instructions
- 8. Collect or source baseline information
- 9. Training/simulation

1. Form assessment Teams

- Multidisciplinary teams
- Volunteerism is the essence
 - Composed of small size, during actual deployment

2. Develop Standard Operating Procedures

- Team activation
- Team roles/individual roles
- Logistics, transport
- Communication
- Staff safety
- Reporting requirements

3. Team equipment & tools

- Prepare standard survey team equipment list
- Keep the necessary materials ready
- Orientate the team members on the use of equipments; like setting-up a tent, life jacket, and map reading etc.

Inspection Team Equipment Checklist

- Area maps (preferably laminated)
- Water soluble markers for laminated maps
- Notebooks or pads
- Pencils/pens
- Binoculars
- Camera and spare film
- Fluids (coffee/tea)
- Rations
- Anti-motion sickness tablets
- Sick bags (for aerial inspection)
- Personal equipment (sunglasses, suitable clothing, caps)

4. Identify information needs & users

- Identify needs before hand to save time at the actual time of collection
- Prioritize information needs
 ✓ Essential
- ✓ Background
- Who will be the potential users of these information. Information may be useful for media and general public.

5. Design survey forms

- Various kinds of reports are needed technical, official, confidential and those for public release through the media for effective response
- Common format to be developed and used
- Designed by multiple users related to assessment and response
- Design in consultation with specialists in each sector
- Clear
- Easy to complete

adpc

6. Data collection methods

- Visual inspections
- Interviews with key informants
- Special interviews

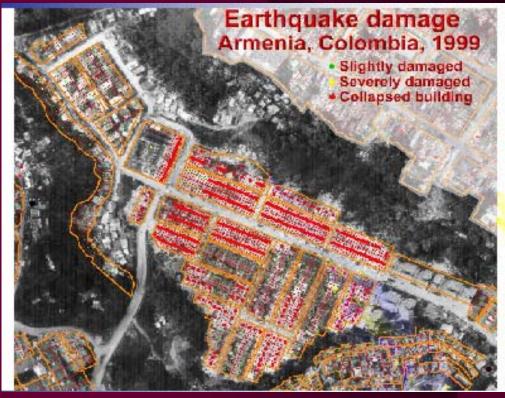
Aerial Photography

Damage assessment Islamabad Pakistan

ITC, Enschede The Netherlands 2000-2001

Damage assessment Islamabad Pakistan

Before Earthquake



After Earthquake

Aerial Photography

Natural Hazard Maps prepared with the help of APs

7. Standard briefing instructions

- Prepare standard briefing instructions to before sending a survey mission.
- The Team is likely to include people who do not have regular contact with emergency or disaster management organization, or who may be inexperienced in carrying out surveys.

Standard briefing instructions (cont) The instructions should briefly outline.

- Purpose of the survey
- Team organization
- Team equipment
- Areas to be surveyed
- Information sectors to be covered
- Standard terms and their meanings
- Techniques for obtaining information
- Reporting requirements

adpc

8. Collect the Baseline information

- Comparison of survey with Baseline information is valuable for response and recovery plans.
- Specialist government agencies keep baseline information.
- NGOs should include contacts of relevant agencies through which baseline information can be obtained.

Baseline Data

- Area maps and plans
- Census and statistics agencies
- National, state and local government Maps
- Statistics
- Plans
- Lists of agency staff
- Government resources
- Community capacities

Baseline Data

- Contact numbers for agencies, donors, superiors, embassies, media, specialized technical experts
- Baseline data should be up-dated from time to time, so that it is relevant and reliable when needed

9. Simulations/training

The teams must be given training on following aspects:

- Use of survey forms
- Reporting requirements and process
- Living in the field
- Use of equipment and tools
- Personal safety
- Simulations to enhance learning;
- Team wide debriefing on lessons learnt at the end of each mission;

adpc

Context of Damage Assessment

- Primary focus is on condition of physical assets:
 - Buildings (Residential, Office, Commercial, Lifeline etc.)
 - Roads and Bridges
 - Water supply and sanitation structures
 - Dams and other irrigation structures
 - Industrial facilities (including power plants)
 - Ports and other coastal structures
 - Electrical and Communications system structures

Asian Disaster Preparedness Center

adpc

Primary Focus for DA

- Structures which are owned by multiple agencies of the government
- Structures that may require government funds for repairs or rehabilitation (including private buildings)
- Structures that affect a large number of people

Buildings

Bridges

adpc Tanks and storage reservoirs (UGSR, GSR & ESR) Asian Disaster Preparedness Center

Secondary Focus for DA

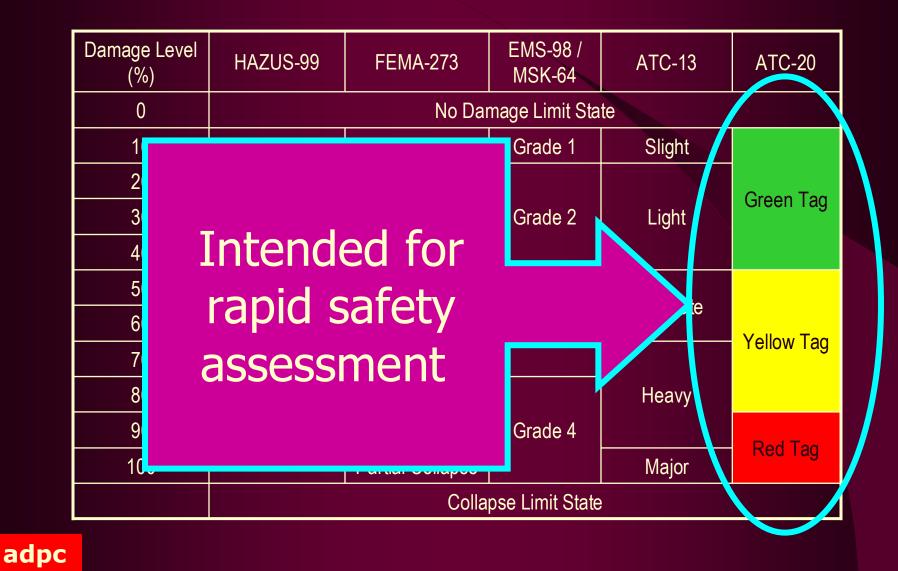
- Structures owned or operated by specialised agencies
- Very complex structures that require highlevel technical skills for assessment
- Complex industrial facilities
- Port and harbour structures
- Petrochemical infrastructure
- Dams
- Roads

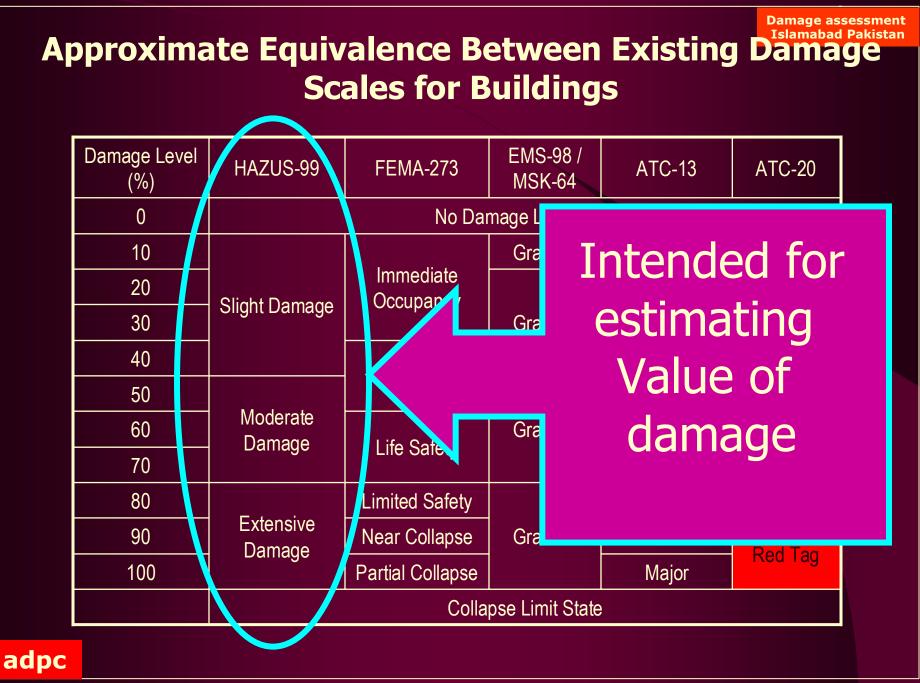
adpc Electrical generation & transmission networks, etc.

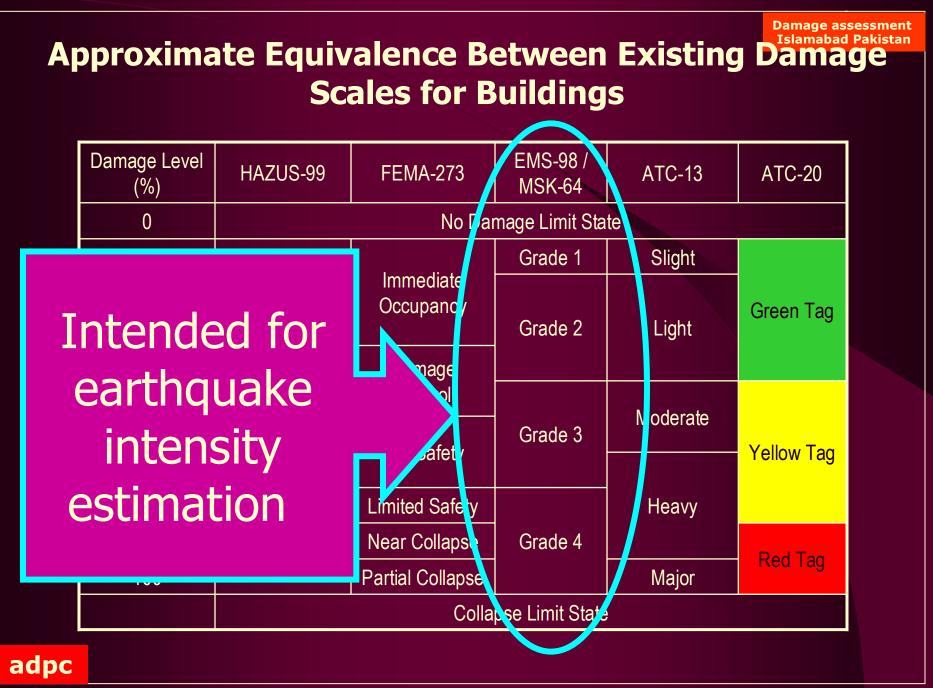
Damage Assessment for Buildings

- Method should dependent on building type
- Very large number of buildings are likely to be damaged in a major disaster – Method should be relatively rapid
- Structural repairs are based on technically detailed evaluation Method should be technically rigorous
- Method should consider the variations in international "best practices"

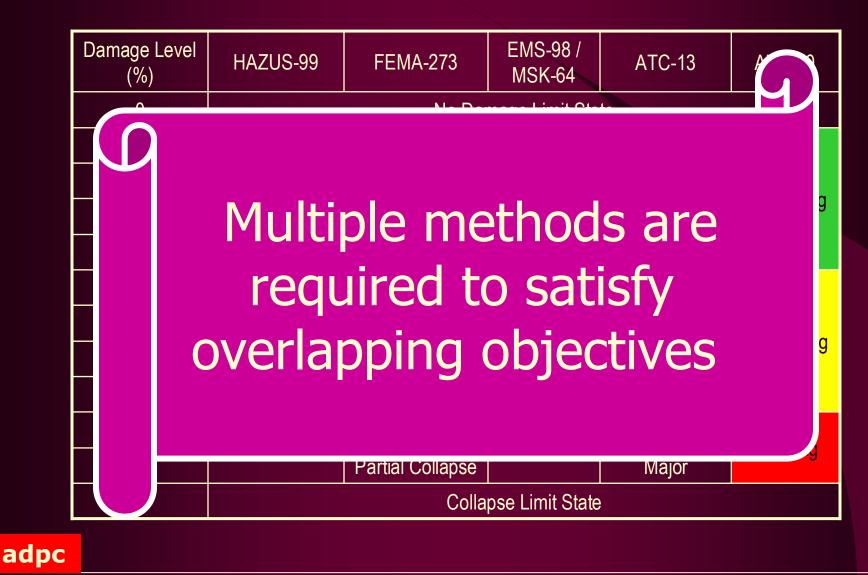
Approximate Equivalence Between Existing Damage Scales for Buildings


Damage assessment

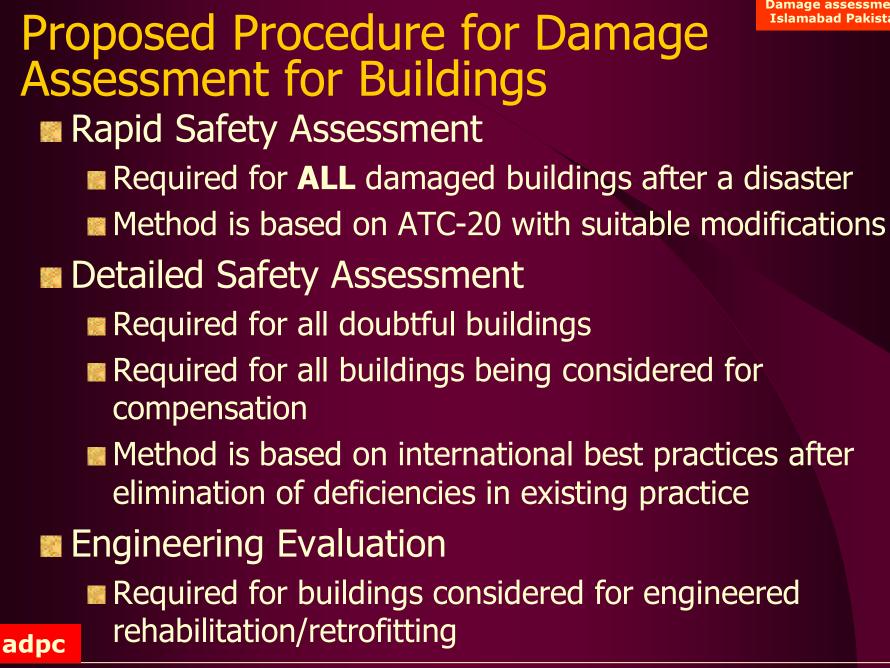

Damage Level (%)	HAZUS-99	FEMA-273	EMS-98 / MSK-64	ATC-13	ATC-20
0	No-Damage Limit State (Grade 0)				
10	Slight Damage	Immediate Occupancy	Grade 1	Slight	Green Tag
20			Grade 2	Light	
30					
40		Damage Control			
50	Moderate Damage		Grade 3	Moderate	Yellow Tag
60		Life Safety			
70				Heavy	
80	Extensive Damage	Limited Safety	Grade 4		
90		Near Collapse			Red Tag
100		Partial Collapse		Major	
	Collapse Limit State (Grade 5)				


adpc

Approximate Equivalence Between Existing Damage Scales for Buildings


Damage assessment

Approximate Equivalence Between Existing Damage Scales for Buildings



Proposed Procedure for Damage Assessment for Buildings

International experience clearly shows that a single "fit-all" methodology not feasible to satisfy all short, medium and long-term objectives

Three-step methodology has been proposed:
 Rapid Safety Assessment
 Detailed Safety Assessment
 Engineering Evaluation

Damage Assessment for Bridges

- Low redundancy structures collapse may be sudden and catastrophic
- Structural repairs are based on technically detailed evaluation Method should be technically rigorous
- Damage assessment likely to be carried out by technical persons from the responsible line departments
- Damage assessment procedure developed based on these considerations

