## **Efficient Management of Arid Land**

Prof. Dr. Riaz A. Khattak Khyber Pakhtunkhwa Agricultural University Peshawar Soil is an endangered entitySoil must be treated as living entity

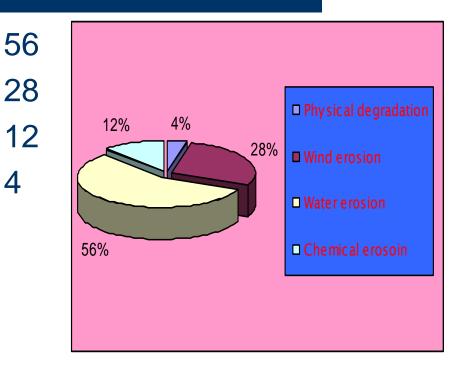
- According to the survey conducted by UNEP and World Resources Institute (1992)
  - Top Soil is eroding faster than it forms on 38% of the World's crop land.
  - 15% of the world's land (two third of Asia and Africa) was degraded to some extent by soil erosion.

- Recent studies show: in northwest China, a combination of overplowing and overgrazing is causing massive wind erosion of top soil.
- Int. Agric. Research Study (2000) showed: 40 % of the world's land (75% in Central America) used for agriculture is seriously degraded by erosion, salinization and water logging.

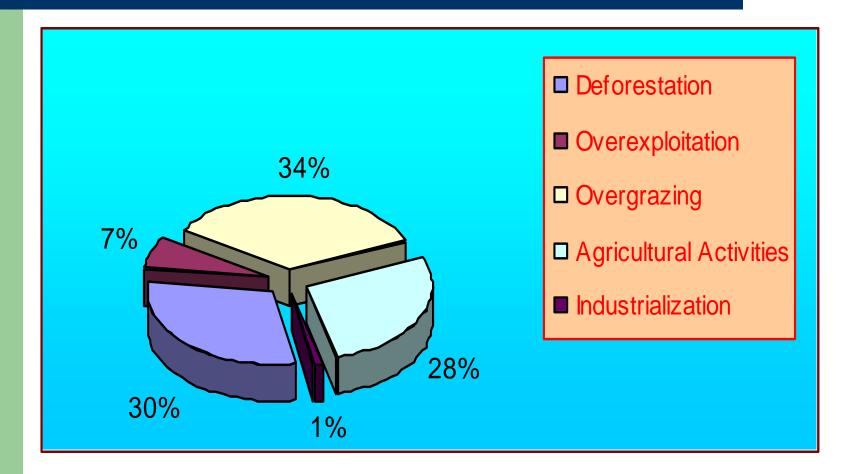
- Abrol et al. (1988) estimated that world as a whole is losing at least ten hectares of arable land every minute,
  - 5 ha because of soil erosion,
  - 3 ha due to soil salinization
  - 1 ha each because of other soil degradation processes and due to non-agricultural uses

- According to this survey soil has reduced food production and about 16 % of the world's crop land.
- According to David Pimental: soil erosion causes damages (direct + indirect) of at least \$37.5 billion yr<sup>-1</sup>, with an average of \$42 mill h<sup>-1</sup>

## **Global Land and Soil Degradation**


|                                                | Bill ha |
|------------------------------------------------|---------|
| <ul> <li>Desertification (Non-soil)</li> </ul> | 2.6     |
| <ul> <li>Deforestation (Non-soil)</li> </ul>   | 0.5     |
| <ul> <li>Soil Degradation</li> </ul>           | 2.0     |
| (85% slight-moderate, 15% severe)              |         |

## **Global Land and Soil Degradation**


 5 Bill ha degraded land (world) = 43% of Earth's Vegetated Land

## Soil Degradation: % caused by

- Water Erosion
- Wind Erosion
- Physical Deterioration 12
- Chemical Deterioration 4



## **Soil Resource Degradation**



# **Rainfed Agriculture**

- Arid Climate P/ETP (0.03 to 0.5)
- High temp, high E.T.
- Low Rainfall
- Uneven distribution of rainfall
- Two third received in Monsoon
- Most of rain waters lost due to barren soil
- Lack of water conservation technology
- Water losses erosion, sedimentation
- Soil losses nutrients, SOM (soil structure)

## Low Water Storage Capacity

- Due to removal of SOM
- Shallow Soil
- Poor Vegetative Cover
- Over Grazing
- Deforestation (Fuel, construction material, cash)

## **Dry Lands of Pakistan**

| Category  | P/ETP*      | mill. ha | %    |
|-----------|-------------|----------|------|
| Arid      | 0.03 - 0.2  | 26.9     | 30.6 |
| Semi-Arid | 0.20 - 0.50 | 15.8     | 17.6 |
| Sub-humid | 0.50 - 0.75 | 01.2     | 01.4 |
| Humid     |             | 44.2     | 50.1 |
|           |             |          |      |

\*P/ETP is the ratio between precipitation and potential evapo-

transpiration.Source: NCS Secretariat, Environment and Urban Affairs Division, Islamabad.

|                 | Pakistan     | KP                   |  |
|-----------------|--------------|----------------------|--|
|                 | mill. ha     | mill. ha             |  |
| Total Area:     | 79.6         | 10.2 (11.56% of Pak) |  |
| Area Surveyed   | 61.8 (83%)   | 9.1 (86%)            |  |
| Unproductive    | 24.9 (40.3%) | 3.7 (36.3%)          |  |
| Pasture+Forests | 16.8 (27.2%) | 3.5 (38.5%)          |  |
| Cultivable Area | 20.0 (32.4%) | 1.9 (20.9%)          |  |

### Land Utilization in Southern KP (in hectares)

|             | Total Area | Cropped Area | Cultivable Waste | Forest  | Irrigated | Barani  |
|-------------|------------|--------------|------------------|---------|-----------|---------|
| DI Khan     | 730575     | 155753       | 377540           | 3908    | 119710    | 36043   |
| Tank        | 165590     | 37064        | 75551            | 45411   | 24529     | 12535   |
| Bannu       | 118958     | 85572        | 15537            | 160     | 47920     | 37592   |
| Laki Marwat | 314990     | 147141       | 43293            | -       | 46920     | 100221  |
| Kohat       | 431141     | 87755        | 40904            | 47601   | 23672     | 64083   |
| Karak       | 264775     | 63943        | 13777            | 8349    | 1662      | 62281   |
| Sub Total   | 2026029    | 577228       | 566602           | 105429  | 264413    | 312755  |
| Total KP    | 6510946    | 1924749      | 900517           | 1315109 | 839356    | 1085393 |
| % of KPK    | 31.1       | 30.0         | 62.9             | 8.0     | 31.5      | 28.8    |

### **Rainfall Distribution in Southern KP (mm)**

|                           | DI Khan | Kohat | Bannu | Karak |
|---------------------------|---------|-------|-------|-------|
| June                      | 71      | 13    | 35    | 58    |
| July                      | 84      | 82    | 32    | 100   |
| August                    | 22      | 48    | 78    | 111   |
| September                 | 22      | 47    | 52    | 47    |
| Sub total                 | 199     | 190   | 197   | 316   |
| Yearly total              | 275     | 509   | 352   | 416   |
| % of Total (Jul to – Sep. | 72.4    | 37.3  | 56.0  | 76.0  |

## **Strategies for Efficient Management of Rainfed Areas**

#### Strategy and Approach:

Integration of all possible resources to provide basic minimum needs to maximum people by exploiting the economic potential in sustainable manners.

#### Sustainable Development:

Use of natural resources by maintaining balance between growth and development at sustained rate with objective of poverty alleviation and protecting environment without compromising on future needs

## **Strategies for Efficient Management of Rainfed Areas**

- Technology Development/Indigenous technology
- Dissemination of Technology to the end user
- Resources/Financing/Prioritization
- Rules and Regulations and Implementation
- Self Reliance
- Skilled Man Power

 Using Scientific Knowledge and ecological wisdom we can manage the earth (Rene J. Duhos, )

## **Ecological Wisdom:**

- Nature exists for all the earth's species, not only for us
- There is not always more, and it is not all for us
- Some forms of economic growth are beneficial and some are harmful
- Our success depends on learning to cooperate with one another and with the rest of nature instead of trying to dominate and manage earth's life-support systems primarily for our own use.

## Reducing Soil Erosion and Conserving Soil

Principle: Improvement in Both Soil and Vegetation Management Must go Hand-in-Hand

- Conservation Tillage: maintain vegetative on soil surface : Minimum Tillage or No Tillage
- Special planting machines inject seeds, fertilizers and herbicides into slits made in the unplowed soil.
- Reduce erosion, saves food, reduces costs, holds more soil water reduces soil compaction, allows several crop per season, does not reduce crop yields and reduce CO<sub>2</sub> release from soil.

## Reducing Soil Erosion and Conserving Soil

- Terracing on Steep Slopes.
- Contour Farming (contour plowing and cropping)
- Strip cropping: alternate planting of row and cover crops.
- Alley cropping (Agro-forestry)

(planting several crops in strips between trees and shrubs that can provide fruit of fuel wood)

## Reducing Soil Erosion and Conserving Soil

- Wind breaks and shelter belts.
- Gully reclamation: Bioengineering
- Organic manures: animal, green, compost, and crop rotation.

### **Cover Crop**



#### Cover crop to combat erosion

# Seasonal nutrient losses (kg ha<sup>-1</sup>) from soils at different slope positions (Farman et al. 2007)

|            | Slope Positions   |                   |                      |  |
|------------|-------------------|-------------------|----------------------|--|
| Treatments | Top-slope<br>(6%) | Mid-slope<br>(3%) | Bottom-slope<br>(0%) |  |
| Mineral N  | 1.95 a            | 1.69 b            | 0.91 c               |  |
| Р          | 1.17 a            | 0.97 a            | 0.55 a               |  |
| К          | 32.14 a           | 28.66 a           | 23.97 b              |  |
| Zn         | 0.32 a            | 0.19 a            | 0.13 a               |  |
| Cu         | 0.76 a            | 0.73 b            | 0.39 c               |  |
| Fe         | 1.51 a            | 1.28 b            | 0.81 c               |  |
| Mn         | 0.26 a            | 0.23 a            | 0.20 a               |  |

## Land Leveling

Effect of Slope on Soil and Water Losses under Mono – and Mix Cropping System

|       | Cropping                                  |       |          |     |  |  |
|-------|-------------------------------------------|-------|----------|-----|--|--|
| Slope | Mono                                      | Mix   | Mono     | Mix |  |  |
| %     | Soil Mg ha <sup>-1</sup> yr <sup>-1</sup> |       | % Runoff |     |  |  |
| 1.0   | 2.7                                       | 2.5   | 18       | 14  |  |  |
| 5.0   | 87.4                                      | 49.9  | 43       | 33  |  |  |
| 10.0  | 125.1                                     | 85.5  | 20       | 18  |  |  |
| 15    | 221.1                                     | 137.3 | 30       | 19  |  |  |

Derived from: Green land and Lal: (Soil Conservation and management in the tropics (1985) P.83-84

#### Land Use and Tillage

Effect of Land Use and Tillage on the Loss of Nutrients in Run off from a silty clay 10am Haplusalf in Ohio

| Water/Nutrient Losses | Tillage System                       |                                                                    |      |      |  |  |  |
|-----------------------|--------------------------------------|--------------------------------------------------------------------|------|------|--|--|--|
|                       | Forest                               | ForestUntilled AlfalfaRidge Tilled CornConventional<br>Tilled Corn |      |      |  |  |  |
| Runoff % of rain fall | 5                                    | 18                                                                 | 33   | 40   |  |  |  |
| Nutrients Loss        | kg ha <sup>-1</sup> yr <sup>-1</sup> |                                                                    |      |      |  |  |  |
| Nitrogen              | 19                                   | 13                                                                 | 49   | 315  |  |  |  |
| Phosphorus            | 0.26                                 | 0.21                                                               | 1.12 | 2.65 |  |  |  |

#### **Salt-affected Soils**

## **Reclamation of Salt-affected Soils**

- Physical Reclamation.
  - Deep tillage, sanding, horizon mixing, profile inversion, trenching, sub-soiling, and irrigation
- Chemical Reclamation/use of amendments:
  - Inorganic: Sulfur, Gypsum and Pressmud.
  - Organic: FYM, City Wastes.
- Biological Reclamation:
  - Salt Tolerant Crops and Trees.
  - Cultural practices, irrigation, ridge sowing, fertilizer management, green manuring, crop rotation

#### Watershed Mgt.

# Watershed management upstream and on-farm water management.

#### Water storage and recharging of aquifers

- Ponds development
- Rodkohi system
- > Karez system
- Check dams
- Small dams
- Mega dams
- > Rain water harvesting in residential area.

#### Sci.& Technology

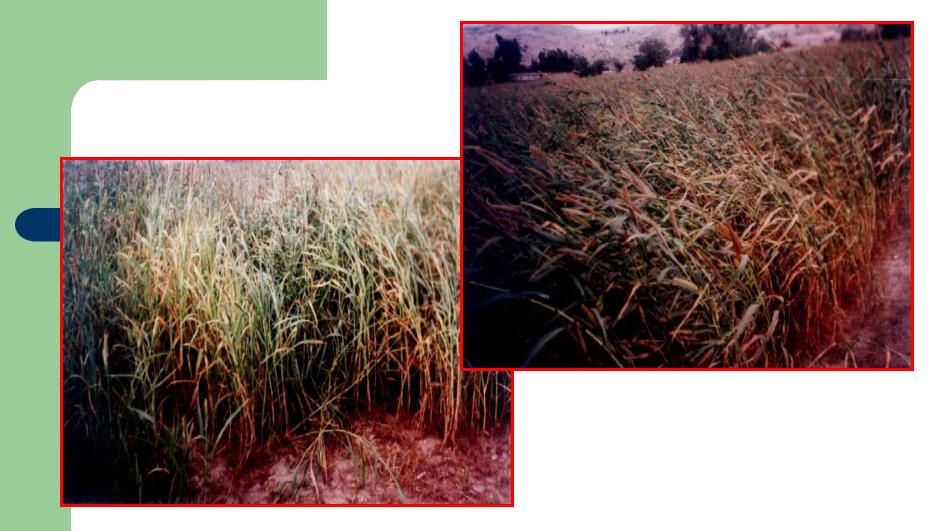
## **Science and Technology**

- Biotechnology: salt tolerant and drought resistant plants
- Information Technology
- Remote Sensing and GIS
  - Land use capability
  - Resource mapping
  - Effective Planning, Management



#### **Suitable Crops**



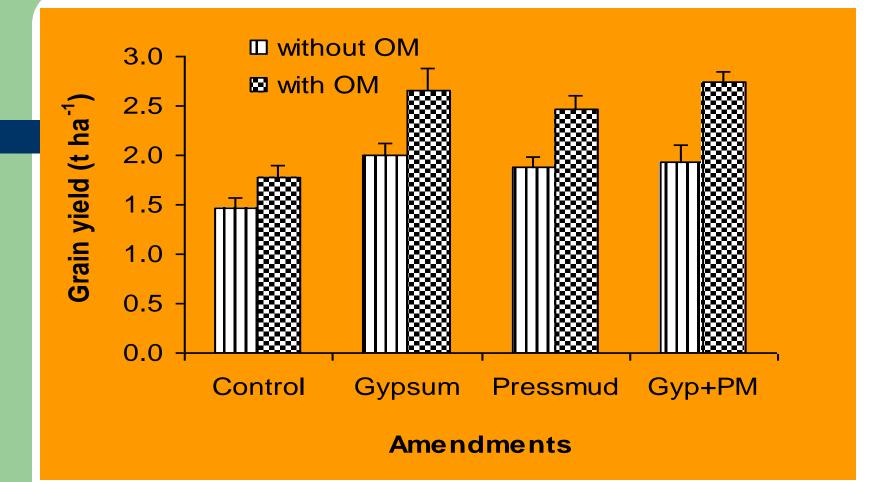

Cotton (FH 900 and CIM 473) grown at silt loam soil site-32 (L) and silty clay loam soil 33 (R), Lachi with ECe = 6.15 and 2.17 dSm<sup>-1</sup> and EC<sub>iw</sub>= 5.67 and 2.21 dSm<sup>-1</sup>



Ground nuts grown on gypsum treated sandy loam soils at Tarkha Kohi Karak with ECe = 6.11 (L) and 4.0 dSm<sup>-1</sup> (R)

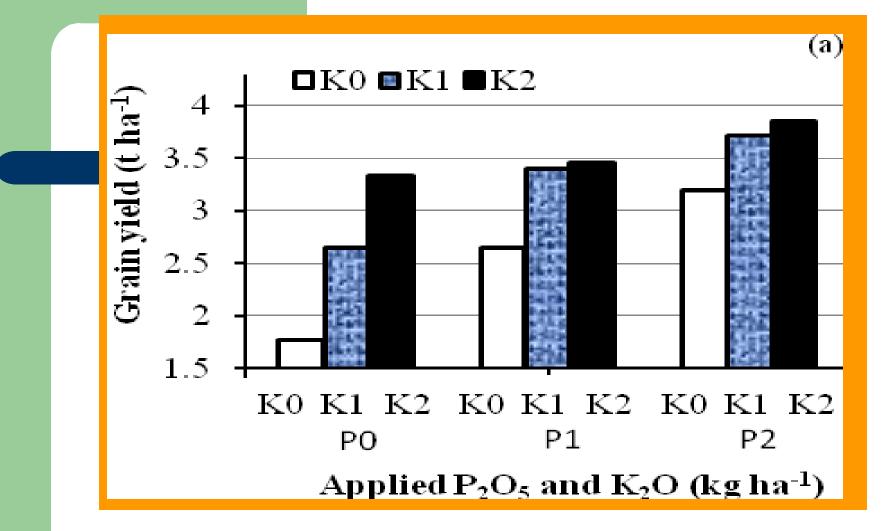


Maize (local) Grown on Gypsum Treated Saline Sodic Soils at Site-32 Lachi.



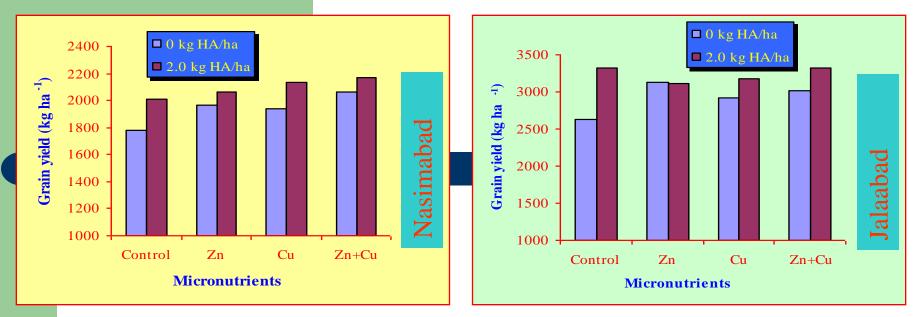

Millet Grown on Gypsum Treated Sandy Loam Saline Soils at Tarkha Kohi, Karak.

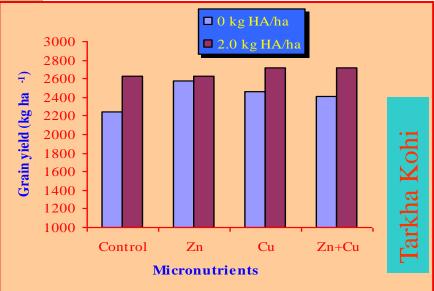



#### Sugar beet (Kaweterma) grown at Lachi (site 32) with EC<sub>e</sub> 4-9 and EC<sub>iw</sub> $6.05 \text{ dSm}^{-1}$

#### **OM and Amendments**




Addition of FYM with gypsum, PM and G+PM boosted the grain yield of wheat as compared to alone application without FYM under saline-sodic soils Field Exp. 2


#### P and K Mgt.



Grain yields of wheat as affected by three levels of  $K_2O$  (0, 75 and 150 kg ha<sup>-1</sup>) at three levels of  $P_2O_5$  (0. 60 and 120 kg ha<sup>-1</sup>) in silty clay loam saline-sodic soil

#### HA in Arid areas





Wheat grain yield as influenced by HA applied alone or combined with micronutrients during rabi 2006-07

#### HA in Arid areas





## Field Days



# Field Days

