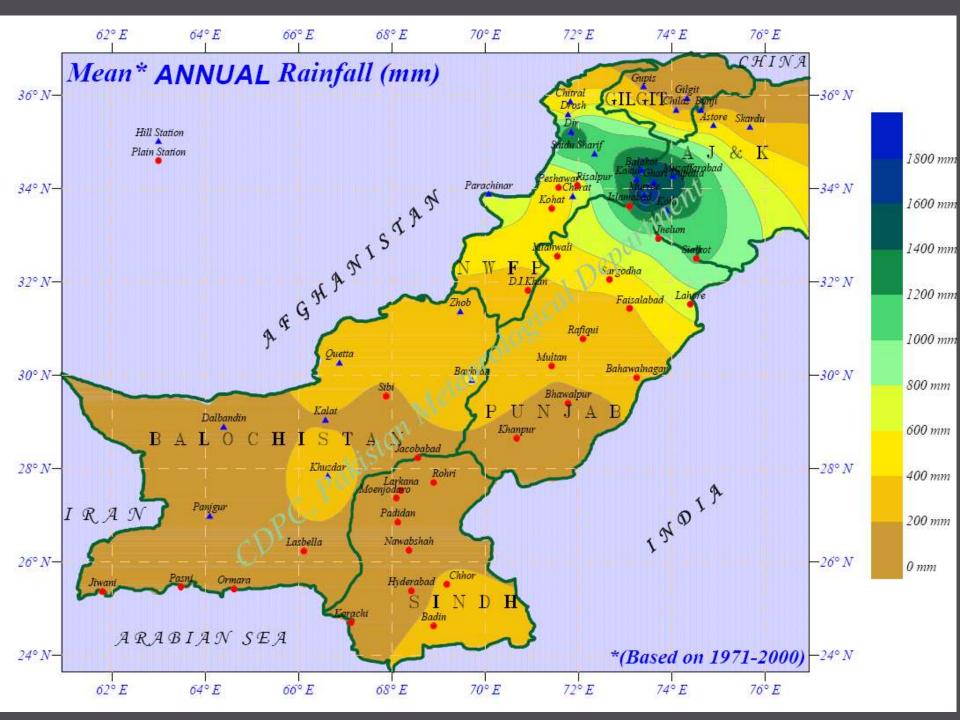
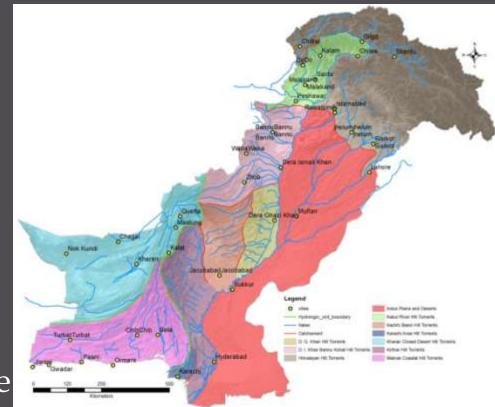
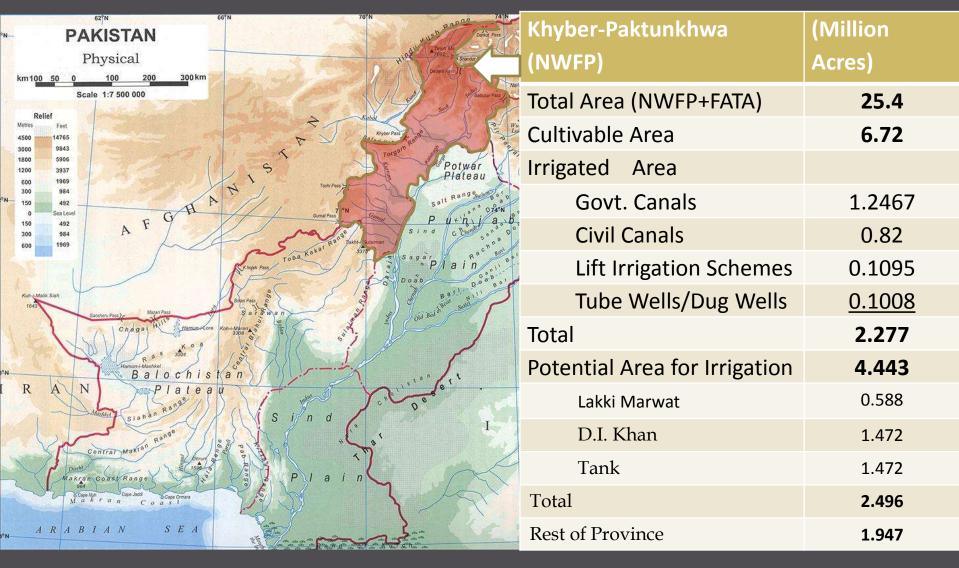
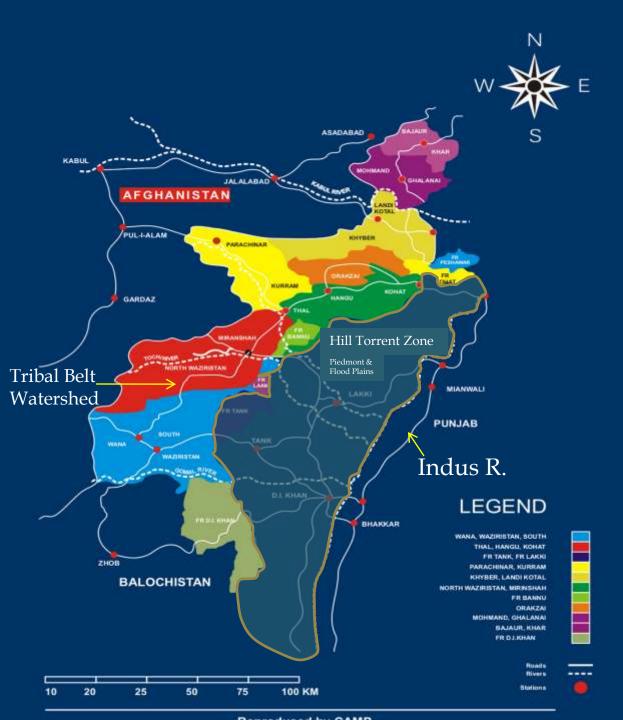

ARID REGIONS, NW FRONTIER REGION WATERSHED MANAGEMENT AND LAND REHABILITATION


M. Asif Khan, National Centre of Excellence in Geology University of Peshawar


Karachi


Background

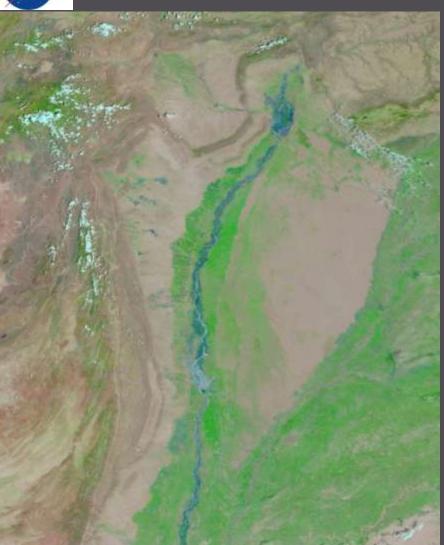
- Mountain Front Alluvial Plains constitute ~1/6th of Pakistan area (i.e., 200,000 Km2).
- All the four provinces partially constituted by these alluvial plains.
- Being topographically higher than the Indus
 River, only partially irrigated by canals from the trunk river.



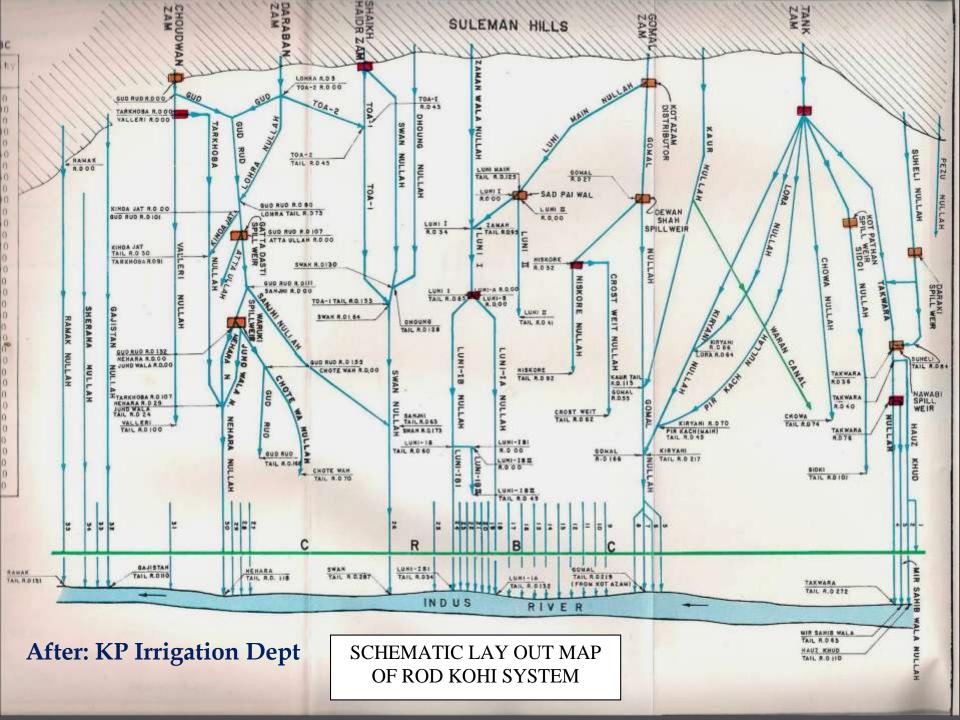
 Irrigation dependent on hill torrents from Sulaiman-Kirthar Ranges, with some input from ground water

IRRIGATION POTENTIAL

After: Naseem Golra, KP Irrigation Department


WATERSHED & HILL TORRENT ZONE, KP (NWFP) & FATA

- •Southern KP (NWFP) lies between Indus (East) and Sulaiman Range Mountain Front (West)
- Comprises Arid Piedmont Plains (West) and Flood Plains (East)
- Tribal Belt (FATA) marks the watershed for Hill Torrent Zone of Southern NWFP.
- Watershed Environment of FATA is key to Hill Torrent Flood Mitigation and Rud Kohi Irrigation in Piedmont and Flood Plain of the Southern KP.


Hill Torrent Floods D.I.Khan Region, 2010

acquired July 10, 2010

acquired August 11, 2010

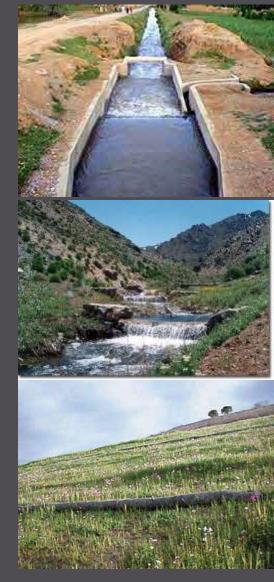
Status of Arid-Alluvial Plains

Potentials

- □ Vast plain area (e.g., DIK-Tank Area over 90,000 Km2)
- Rich alluvial soils transported by hill torrents
- Efficient recharge of the groundwater
- Irrigation potential through hill torrents
 Impediments
- □ Arid climate, < 200 mm annual rainfall.
- Monsoon precipitation highly variable (defined and the floods)
- Sustainability of Flood irrigation (Rod Kohi) difficult.
- Soil erosion extensive.
- □ Low agriculture/horticulture yield
- Poor socioeconomic conditions.

Objectives

- Reduction of flood damages on piedmont plains (inundation, soil erosion) and on infrastructures (villages, canals, roads, railways, bridges) and thereby reducing the maintenance costs.
- Increased and sustained biomass production for sustainable livelihood through watershed management practices including development of irrigation methodologies (flood and groundwater based irrigation), rangeland and livestock development, and forestry.
- Watershed protection and ecological rehabilitation through soil and water conservation, revegetation.


Possible Remedies

Piedmont Plains (Southern KP-NWFP)

- Flood management in piedmont plains by structural measures such as distribution and diversion structures
- Permanent diversion structures to withstand heavy floods, to ensure reliable resources for irrigation, agriculture development and sustainable livelihood.

Watershed/Catchment area (Tribal Belt-FATA)

- Watershed needs structural and ecological rehabilitation to ensure increased and sustained biomass production for the inhabitants.
- Flood management in the catchment area through structural (sediment traps, rain harvesting ponds, slope stabilization) and nonstructural measures (grazing management, grass seeding, afforestation, bioengineering).

Planning Concepts

Integrated Watershed Management

- System (holistic) Approach. Rather than addressing the issue in parts, need to think in terms of "System".
- Process Oriented. Each component needs to be dealt with in terms of process (e.g., erosion control, sediment trapping, rangeland development, water harvesting, storage-diversion structures)
- Community oriented. Beneficiaries to be actively involved in the detailed planning and implementation of the proposed measures.
- Short-term, medium-term and long-term measures to constitute the plan.

Principal Components

- Water Conservation:
 - Storage of surface water
 - Optimal diversion to storage structures and fields
 - On-Farm best management practices.
 - Recharging of groundwater.
 - Seepage control
 - Evaporation reduction through aspect considerations, choice of plant species, on-farm water management.
- Regenerating the Natural Vegetation
 - Community managed temporary closures from grazing activity.
- Rotational grazing.
 - Renewed grass, shrub, tree seeding for fodder development. native vegetation regeneration
- Soil Retention
 - Earthen and stone bunding
 - Vegetation

Principal Components

Piedmont Plains

- Flood Mitigation Plans
- Rod Kohi Development Plans
- Groundwater Management Plan
- Soil Conservation/Development Plan
- Agriculture/Horticulture Development Plan

Watershed/Catchment

Rangeland Management Plan

Flood Mitigation/Irrigation Program

- Existing diversion structures (Modification/Repairing/Rehabilitation)
- New flood diversion structures
- Water storage ponds/Rain Harvesting
- Bund stabilization through:
 - Structural measures (e.g., stone pitching)
 - Bioengineering (e.g.,trees, shrubs, grass)

Groundwater Management Program

- Groundwater monitoring for water levels, water quality, and abstraction from existing wells
- Monitoring of recharge conditions
- Rain harvesting structures for increased recharge
- Water Conservation (improved irrigation techniques, on farm water management)

Rangeland Management Program

Objectives:

- Reduced rainwater run off.
- Increase soil moisture through water retention.
- Greater groundwater recharge
- Reduce erosion and adverse siltation in water courses


Possible Measures

- Regenerating vegetation (grass, shrubs, trees).
- Erosion control through structural measures for slope stability
- Erosion Control with bioengineering
- Temporarily closing/fencing of grazing ground
- Rotational grazing
- Multi-purpose grass/tree species (erosion control, water/moisture retention, fodder and fuelwood)

Expected Benefits:

- Increased livestock products/higher income.
- Increased charcol production
- Greater retension of run off water reduced flood damage
- Groundwater recharge through higher infiltration rates
- Reduced erosion and adverse siltation in downstream

Pre-Requisite Studies

Inception Stage:

- Homework started since March 2010.
- Organizing an international workshop as part of the Inception Stage to formulate planning and strategies and identification of expert human resources
- Identification of representative watersheds for pilot projects.
- Preparation of Project Proposal (December 2010-January, 2011)

Stage II: Planning/Designing

Terrain Mapping

- Physiography (Topography, Geology, Geomorphology, Landforms, Soil (NCEG; Soil Survey of Pakistan)
- Landuse/Vegetation (NCEG, PFI)
- Drainage Pattern (WRRI_NARC, UET_Pesh, KPAU_Pesh)
 Surveys & Inventories
- Agro-Economy Survey (KPAU)
- Inventory of Flood Irrigation System (WRRI_NARC, KP Irrigation Dept)
- Inventory of Existing Soil Conservation Measures (NCEG, WRRI_NARC, KP Irrigation Dept)
- Inventory of Existing Water Conservation Measures (NCEG, WRRI_NARC, KP Irrigation Dept)
- Assessment/Mapping of Soil Erosion (KPAU_Pesh, NCEG, SSP)
- Socioeconomic Survey (UoP)
- Rangeland Survey for grass, shrub varieties (PFI_Peshawar)
- Water Resources Survey (Rainfall data, Stream Flow-Gauge Data) NCEG, WRRI_NARC, KP Irrigation Dept
- Sediment Load Survey (NCEG, WRRI_NARC, KP Irrigation Dept)
- Ground Water Inventory (Existing well data, Water Table depth, Aquifers, Quality, Recharge) (NCEG, WAPDA)

Plans/Designs to be Developed

Rangeland Non-Structural

- Afforestation (Plant, Grass Seed Nursery, Supply and Pasture Development)
- Grazing Management (control/development measures)
- Livestock Development

Structural

- Rangeland Erosion Control
- Catchment Sediment Traps
- Rainwater Harvesting Structures
- Water Storage Structures (Ponds, small dams, Large Dams)
- Flood Control Structures
- Rain Harvesting Structures

Piedmont

Non-Structural

- Soil retension/stabilization/ redevelopment plans
- Soil fertility plans
- Agriculture/horticulture development (crops, fruits)
- Bund stabilization bioengineering designs
- Flood water management (control/distribution, on-farm management)

Structural

- Diversion Channel Structures (Earthen, Stone-Pitched, Concrete Bunds)
- Rainwater Harvesting Structures
- Water Storage Structures (Ponds, small dams, Large Dams)
- Flood Control Structures
- Soil Erosion Control and New Soil Development Structures

Stage III: Implementation

 Pilot/Demonstration Project Approach
 Funding to be arranged Government/International Donors

Consortium Approach

 Expertise from academia, governmental institutions, private sector to be synchronized as a consortium with proper incentives.

- Project Directorate
 - A dedicated Project Directorate to implement the Demonstration Project.

 Relevant Government Departments to be involved with appropriate incentives.

 Maximum emphasis on community participation with appropriate incentives. International Planning Workshop Watershed Management & Land Rehabilitation, NW Frontier Region, Pakistan

- December 6-8, 2010
- Auditorium, Pakistan Academy of Sciences, Islamabad
- Sponsored by:
- U.S. Department of Agriculture
- Higher Education Commission, Pakistan
- 12 Foreign Participants from USA, Netherlands, Nepal, Egypt and Canada.
- Overall 80 participants.
- To be inaugurated by Federal Minster of Food & Agriculture.
- Final Plenary Session Wednesday, December 8, 2010, which will be chaired by the Honourable Governor Khyber-Pakhtunkhwa Province.

International Planning Workshop Watershed Management & Land Rehabilitation, NW Frontier

Region, Pakistan

December 6-8, 2010

Auditorium, Pakistan Academy of Sciences, Islamabad

WORKSHOP FORMAT

- 11 Sessions, 9 sessions are Technical.
- 37 Technical Papers being presented.
- Three Working Groups in 4 Technical Sessions : <u>Way-Forward Plan</u> WORKSHOP THEMES
- Mountain-Front Alluvial Fans, Pakistan: Geological and geomorphological aspects.
- Hill torrents and flash floods: history, frequency, intensity, distribution, hazards and possible remedies.
- Flood irrigation practices (Rod Kohi); historical background, layouts, structures, achievements, shortcomings and way forward.
- Irrigation engineering; channelization, diversion channels, sediment traps, reservoirs (dams), irrigation canals from Indus River.
- Soil erosion, degradation, reclamation, stabilization, fertility and productivity.
- Groundwater hydrology.
- Agriculture development and afforestation