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Abstract

 Feyzaabad area is situated in the northeastern part of Iran that hosts mainly Iron Oxide Copper-Gold 
(IOCG) mineralization. In the present study, support vector machine (SVM), as a supervised classification 
method in mineral prospectivity mapping, is applied in 1:100000 Feyzaabad area, in east of Iran. Different 
evidential layers such as hydrothermal alteration, geological and geochemical data were integrated to 
generate prospectivity model for IOCG mineralization. The outcomes of the SVM method show that 
prospective target areas for IOCG deposits are defined mainly by vicinity to NE–SW trending faults and 
pyroclastic rocks (mainly tuff) and Au-Cu geochemical anomalies. These outcomes show that SVM is a 
potentially effective method in order to integrate multiple information evidence layers in predictive mapping 
of mineral prospectivity.The final prospectivity model investigation  demonstrate that beside identifying 
known IOCG deposits, which were applied as training regions in the applied method to evaluate the SVM, the 
applied method has specified some new targets as well. So the target areas shown in the final prospectivity 
model can be applied for follow-up exploration of the IOCG deposits.

Keywords:  Mineral prospectivity mapping, SVM method, IOCG, Feyzaabad.

1.  Introduction       

 
      Mineral exploration is as a principal and 
complex process that the main aim is to explore 
new mineral potentials in a study area (Abedi et 
al., 2012). Different information layers of  
geosciences datasets consisting of geological 
data, geochemical data, geophysical data  and 
remote sensing data (Carranza and Laborte, 
2014) are integrated, analyzed and processed 
for mineral prospectivity mapping (MPM) to 
specify prospective regions. The computer and 
geographic information system (GIS) methods 
are able to visualize,process and analyze data 
(Zuo & Carranza, 2011). 

 Several approaches are applied for the 
MPM, which are classified as data-driven and 
knowledge-driven methods (Bonham-Carter, 
1994; Carranza, 2008; Pan and Harris, 2000). 
Knowledge-driven methods for predicting of 
mineral prospectivity is suitable in regions 
which are less-explored (or so-called 
'greenfields') geologically where no or very few 
known mineral deposits occurred (Lusty et al., 
2012). In knowledge-driven methods for 
predicting of mineral prospectivity, the 
assigned weights to every spatial evidence 

layer are based on geoscientist's knowledge. In 
contrast, it is suitable in regions which are 
moderately- to well-explored (or so-called 
'brownfields'), where the main objective is to 
restrict new targets in order to explore 
undiscovered mineral deposits of the type 
sought (e.g., Mejía-Herrera et al., 2014), some 
examples of these methods are Boolean logic 
(Bonham-Carter et al., 1989), index overlay 
(Bonham-Carter et al., 1989), the Dempster-
Shafer belief theory (Moon, 1990) and fuzzy 
logic (An et al., 1991; Chung and Moon, 1990). 
In data-driven methods, the assigned weights to 
every informative evidence layers are 
quantified spatial relationships between the 
known deposits and particular data sets applied 
to show prospectivity identification criteria 
(Carranza and Laborte, 2014). Data-driven 
predictive mapping of mineral prospectivity 
contain different methods such as weight of 
evidence (Bonham-Carter et al., 1989), logistic 
regression (Agterberg and Bonham-Carter, 
1999), Neural networks (Porwal et al., 2003; 
Singer and Kouda, 1996), evidential belief 
functions (Carranza, 2008; Carranza and Hale, 
2002) and Bayesian network classifiers 
(Porwal et al., 2006).
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Indeed MPM as classification process is used in 
order to identify new prospective regions, if 
data of the previous exploration projects are 
accessible (Yousefi et al., 2012; Najafi et al., 
2014). Classification can be classified as 
supervised and unsupervised classification. In 
supervised classification, the label of classes 
which require to be classified in to is known in 
a d v a n c e .  I n  c o n t r a s t ,  u n s u p e r v i s e d 
classification doesn't need the human 
foreknowledge of the classes; actually it is also 
known as  cluster ing.  The supervised 
classification is the crucial tool which is applied 
for extracting quantitative information. Using 
this method, the analyst access to enough 
known pixels to create representative 
parameters for each evidential  layer. 
Unsupervised classification doesn't need the 
human precognition of the classes, and mostly 
it uses some clustering algorithm in order to 
categorize the evidential information layers.

 Support vector machines (SVMs) are the 
supervised learning models which use the 
learning algorithms for analyzing data and 
identifying patterns, for classifying and 
regression analysis. It was suggested by Vapnik 
(1995) as a data-driven method. This method 
were used in different contexts, such as 
classification of land cover (Otukei and 
Blaschke, 2010; Paneque-Gálvez et al., 2013), 
flood susceptibility mapping and assessment 
(Shafapour Tehrany et al., 2014, 2015), mineral 
prospectivity mapping (Zuo and Carranza, 
2011; Abedi et al., 2012; Rodriguez-Gallano et 
al., 2015), land slide susceptibility (Peng et al., 
2014; Pradhan, 2013; Yao et al., 2008); 
hydraulic unit prediction (Ali et al., 2013) and 
lithological classification (Yu et al., 2012). 

 In order to illustrate the power of the SVM 
method in this study, we applied several 
evidential layers including hydrothermal 
alteration, geological and geochemical data to 
produce the Iron Oxide Copper-Gold (IOCG) 
mineralization prospectivity map in Feyzaabad 
area, east of Iran. At the end, the produced 
prospectivity model was assessed using the 
known mineral potentials as testing points. In 
this study, SVM is proved as a strong and 
efficient tool for integrating multiple evidential 
layers for mineral prospectivity mapping.

2. Data and methodology

2.1. The support vector machine (SVM) method

 The original SVM algorithm as a 
supervised learning method was invented by 
Vapnik et al. (1963).  Boseret al. (1992) 
presented a way to produce nonlinear 
classifiers by using the kernel trickfor 
maximum-margin hyperplanes. The present 
standard type (soft margin) was suggested by  
Cortes and Vapnik in 1993 and published in 
1995. 
 
 A Support Vector Machine (SVM) carries 
out classification by finding the hyperplane that 
maximizes the margin between the two 
classes.The hyperplane which is defined by the 
vectors (cases) are the support vectors (Vapnik 
et al., 1992).The SVM algorithm is included 
three steps: first define an optimal hyperplane 
for maximizing margin, second, expand the 
above definition for non-linearly separable 
problems in order to have a penalty term for 
misclassifications finally, data are mapped in 
high dimensional space where it is easier to 
classify with linear decision surfaces in other 
words reformulate problem so that data is 
mapped implicitly to this space.

 The optimum separation hyperplane 
(OSH) is the linear classifier with the maximum 
margin for a given finite set of learning patterns. 
The OSH computation with a linear support 
vector machine is presented in this section. 

 For classifying of two classes of patterns 
that are separated linearly, i.e., a linear classifier 
can perfectly separate them (Fig. 1).

 The linear classifier is the hyperplane H 
(wx+b=0) with the maximum width (distance 
between hyperplanes H1 and H2). Consider a 
linear classifier characterized by the set of pairs 
(w, b) that satisfies the following inequalities 
for any pattern xi in the training set: (William et 
al., 2007)
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 The compact form of the equations can be 
expressed as:

or

 Because we have studied the case of 
l inearly separable classes,  each such 
hyperplane (w,b) is a classifier which properly 
separates all patterns from the training set:

 For all points from the hyperplane H (wx + 
b = 0), the distance between origin and the 
hyperplane H is |b|/||w||. We study the patterns 
from the class -1 that convince the equality wx 
+ b = -1, and determine the hyperplane H1; the 
distance between origin and the hyperplane H1 
is equal to |-1-b|/||w||. Similarly, the patterns 
from the class +1 convince the equality wx + b = 
+1, and determine the hyperplane H2; the 
distance between origin and the hyperplane H2 
is equal to |+1-b|/||w||. Of course, hyperplanes 
H, H1 and H2 are parallel and no training 
patterns are located between hyperplanes H1 
and H2. Based on the above  considerations, the 
distance between hyperplanes (margin) H1 and 
H2 is 2/||w||.

 From these considerations it follows that 
the identification of the optimum separation 
hyperplane is carried out by maximizing 2/||w||, 
which is equivalent to minimizing ||w||2/2. 
finding the optimum separation hyperplane is a 
problem that is represented by the identification 
of (w, b) which convinces the equation (1) 
(Burges, 1998).
 

 The beauty of SVM is that if the data is 
linearly separable, there is a unique global 
minimum value. An ideal SVM analysis should 
generate a hyperplane that totally separates the 
vectors (cases) into two non-overlapping 
classes. However, perfect separation may not 
be possible, or it may result in a model with so 
many cases that the model does not classify 
correctly. In this case SVM finds the 
hyperplane that maximizes the margin and 
minimizes the misclassifications.

 Separating two groups with a straight line 
is the simplest (1 dimension), flat plane (2 
dimensions) or an N-dimensional hyperplane. 
However, there are cases where a nonlinear 
region can separate the groups more efficiently. 
SVM controls this by applying a kernel 
function (nonlinear) for mapping the data into a 
different space where a hyperplane (linear) 
cannot be applied to do the separation. It means 
a non-linear function is learned by a linear 
learning machine in a high-dimensional feature 
space while the capacity of the system is 
controlled by a parameter that does not depend 
on the dimensionality of the space. This is 
called kernel trick which means the kernel 
function transform the data into a higher 
dimensional feature space to make it possible to 
carry out the linear separation. 

 In 1992, Bernhard E. Boser, Isabelle M. 
Guyon and Vladimir N. Vapnik suggested a 
way to make nonlinear classifiers by using the 
kernel trick (originally proposed by Aizerman 
et al., 1964) to maximum-margin hyperplanes 
(Boser et al., 1992). The choice of a kernel 
function (K) and its parameters for an SVM are 
crucial for obtaining good results (Zuo and 
Carranza, 2011).

Fig.1.Hyperplane with maximum-margin and margins for an SVM trained with samples from two classes.
         Samples on the margin are called the support vectors(Kavzoglu and Colkesen, 2009).
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2.2. Spectral angle mapper (SAM)

 Spectral angel mapper (SAM) is a spectral 
classification which applied an n-D angle to 
match pixels to reference spectra (Van der Meer 
et al., 1997; Crosta et al., 1998; Hunter and 
Power, 2002). The algorithm calculates the 
angle between two spectra which then 
determines the spectral similarity between 
them. This method was when applied on 
calibrated reflectance spectra, is relatively 
insensible to illumination and albedo effects 
(Crosta et al., 1998; Kruse et al., 1993). We can 
apply the SAM end member spectra used that 
can come from ASCII files, spectral libraries, or 
can be extracted directly from images (as ROI 
average spectra). This method measures the 
angle between the end member spectrum vector 
and each pixel vector in n-D space. Smaller 
angles show closer matches to the reference 
spectrum. Pixels further away than the 
nominative maximum angle threshold in 
radians are not classified (Kruse, 1988).

2.3.Logratio transformation

 In order to eliminate the spurious 
relationships between compositions, the family 
of logratio-transformations is used to deal with 
the closure effects. In practice, these 
transformations are commonly used in 
geochemical data processing to open closed 
systems in order to understand the realistic 
relationships among compositions better 
(Carranza, 2011; Egozcue et al., 2003; 
Filzmoser et al., 2012; Wang et al., 2013). In 
this study, the data were then transformed using 
Isometric logratio (ilr).  Isometric logratio (ilr) 
transformations are efficient category of 
logratio transformations with good theoretical 

properties (Egozcue et al., 2003). For a D-part 
composition x, an ilr transformation can be 
selected as z=(Z ,...., Z )= ilr(x) with: 1 D-1

2.4. Data characteristics and pre-processing

 In this study, five information layers were 
applied to make a prospectivity map. Table 1 
describes the criteria, the informative evidence 
layers and the causes for applying them in the 
study.

 For generating the faults and host rocks 
evidential layers related to the geological 
criteria, 1:100000 scale geological map of the 
study area was used. For alteration mapping, 
we used two ASTER scenes which were pre-
processed up to Level 1B. These images were 
acquired on 18 June, 2007. These scenes were 
georeferenced using an orthorectified enhanced 
thematic mapper plus (ETM+) image in the 
UTM projection (zone 40) with the WGS-84 
ellipsoid as a datum. The log-residual algorithm 
was used for atmospheric correction which 
decreases topography, instruments and sun 
illumination noises. The outcome of the log-
residual algorithm is more representative of the 
soils types or lithologies of the areas in 
comparison with the raw data. Therefore, a 
spectrum resulted from data processed using 
the log- residual technique will be more nearly 
comparable to its related library spectrum. For 
the hydrothermal alteration mapping in the 
study area, the spectral angel mapper (SAM) 
was applied.

Table 1. Summary of evidential layers applied in the study.
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To produce an evidential map of geochemical 
signature (e.g, Carranza, 2008; Yousefi et al., 
2014; Yousefi and Carranza, 2015), we applied 
stream sediment samples of Cu and Au data. In 
the study area, there is a data set for 1033 
composite basic samples of -40 mesh (0.44 
mm) fraction of stream sediments (collected by 
Exploration Co. Jiangxi on behalf of geological 
survey of Iran).  The collected samples were 
analyzed for 28 elements. The concentration of 
Au and Cu elements in the samples were 
detected by Spectroscopy with chemical 
enrichment (Es-I) and coupled plasmas atomic 
emission spectroscopy (ICP) method 
(Exploration Co. Jiangxi, 1994) respectively. In 
stream sediment geochemical exploration, 
regardless of chemical pollution, the variation 
from the normal form has two syngenetic and 
epigenetic components; where the syngenetic 
component is related with petrogenesis and 
epigenetic component is related to economical 
mineralization that is known as the explorative 
useful component. Enrichment index is mainly 
independent of petrographic variations and 

reduces the random errors. Therefore, generally 
it is used for the elimination of petrographical 
effects (Hasanipak and Sharafaldin, 2004). 
After calculating the enrichment index for 
different rock communities in Feyzaabad area, 
the resulted data of Au and Cu elements were 
integrated with each other and they were 
considered as one statistical community. 
Because stream sediment geochemical data set 
is an example of a closed number system, so an 
isometric logratio transformation (ilr) 
(Egozcue et al., 2003; Filzmoser et al., 2009) 
was directed to handle this problem.

2. Geology of the study area

 The study area is situated in Taknar zone, 
which is uplifted in the form of a wedge block in 
north of  Darouneh fault .  The Taknar 
minera l iza t ion  zone  i s  under la in  by 
Precambrian and Paleozoic basement, and 
overlain by Mesozoic and Cenozoic cover. 
There are facial and structural differences 
between this zone and adjacent zones (Fig. 2).

Fig.2. Tectonic map of the east of Iran (modified after Alavi, 1991 and Ramezani and Tuker, 2003). 
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 This zone is limited by two main faults: 
Darouneh fault in the south and Rivash or Taknar 
fault in the north. Both faults are of slip-strike 
type and have an approximate east-west trend 
(Fig. 2). This zone is specified by vast exposure 
of volcanic and sub-volcanic rocks. several 
types of metal ore deposits, such as porphyry Cu, 
Cu-Au-Fe-oxide (IOCG), massive sulfide, Au-
epithermal, intrusion-related gold systems and 
Sn-W skarn and also non-metal deposits like 
bentonite, kaolinite, etc. have been reported in 
the Taknar zone (Karimpour et al., 2009; 
Karimpour and Stern, 2009; Karimpour and 
Moradi, 2010; Malekzadeh et al., 2010; Abdi 
and Karimpour, 2013; Karimpour et al., 2014; 
Najafi et al., 2014).  

 Volcanic activities during Tertiary in east 
of the Taknar zone, between Darouneh and 
Taknar faults, start with dark grey tuffs, 
occasionally of ignimbrite type, accompanied 
with andesitic black lavas. On this unit, we can 
see a large thickness of white breccia tuffs, 
volcanic breccias, grey sandy tuffs, ignimbrites 
and lapilly tuffs. According to the 1:100,000 
geological map of Feyzaabad (Heiydari, 2011) 
in the south of Hesar village, the conglomerates 
are overlain on the set of units with the same dip. 
To the eastof Hesar village, there are sandstone, 
volcanic breccias, and sand tuffs with andesitic 
and trachy-andesitic lavas. In northeast of 
Alishir mountain, trachy-andesites are having 
porphyritic texture. The last product of the 
volcanic activities in this time period is 
pyroxene andesite, alkali basalt and trachy 
andesite in north of Khosh Darreh (east of study 
area). This set has porphyritic and glumero-
porphyritic texture. in the aforesaid set, 
pyroxene and olivine minerals are found in the 
background which composed of plagioclases 
and alkali feldspars (Heiydari, 2011).

 The Eocene facies in northeast of the study 
area, i.e. in Shast Darreh mountains is different 
with the other facies in the area, and it starts with 
light grey conglomerates involving limestone of 
Cretaceous agewith occasionally andesites. 
This conglomerate unit is covered by thick green 
tuff interbedded with limestone and marl which 
are of Eocene age (Heiydari, 2011).

 Two main types of copper, gold and iron-
oxide mineralization like porphyry and vein 

type have been reported from the study area 
(Karimpour et al., 2006; Mazloomi et al., 2008) 
(Fig.3). 

4. IOCG deposits models

 IOCG deposits involve many various ore 
systems and are found on all continents in 
general in Post-Archean rocks from the Early 
Proterozoic to the Pliocene (Hitzman, 2000). 
Host rocks in the neighborhood of ore bodies 
show severe hydrothermal alteration. In the 
close neighborhood of the ore, the variable 
pressure-temperature conditions of alteration 
and mineralization are reflected in a spectrum of 
deposits ranging from those in which the 
dominant Fe oxide is magnetite and alteration is 
specified by minerals such as biotite, K-feldspar 
and amphibole through to hematite dominated 
systems in which the main silicate alteration 
phases are sericite and chlorite. Economic 
mineralization is controlled by paragenetically 
late chalcopyrite ± bornite and occurs within or 
near (but typically not coextensive with) Fe-
oxide accumulations. Distal and shallow 
mineralization is hematite-dominated, whereas 
magnetite forms deeper and earlier. Metals not 
precipitated in these S-poor, moderately 
oxidized environments could potentially form 
distal halos (e.g., Zn-Pb, Mn, or Ag-Co-U). 
Individual mineralized centers seldom expand 
more than a few km across; yet mineralized 
regions can remain over regions 10s to 100s of 
km when defined by the intermittent distribution 
of magnetite- or hematite-rich rocks. Both local 
and regional mineralized zones correlate with 
main regional structural features (e.g., in coastal 
Chile, NW Queensland, northern Sweden) 
and/or with volcano-plutonic structures (e.g., in 
South Australia,  northern Mexico, SE 
Missouri). Few districts have been thoroughly 
studied thus details of temporal and spatial 
patterns of alteration, magmatism (where 
present), and mineralization remain poorly 
constrained. In better mapped regions such as 
NW Queensland, coastal Chile, or the 
southwestern United States it is clear that 
multiple IOCG-like alteration episodes 
occurred intermittently over tens of millions of 
years. Only minorities of occurrences have 
economically interesting Cu-Au mineralization 
and that is typically interpreted to be late in the 
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regional development (Hitzman, 2000). For 
example, in NW Queensland, significant 
volumes of Na (Ca)-dominated rocks clearly 
represent multiple events; some of these are 
meta-evaporites and predate younger, 
metasomatic varieties that accompanied 
multiple styles of Fe-oxide ± Cu(-Au) 
mineralization (Williams and Pollard, 2001). In 
individual  dis t r ic ts ,  h is tor ies  can be 
complicated and do not have simple patterns. 
There is an association with main fault systems 
that likely acted as brittle-ductile shear systems 
of transpressional to transtensional character at 
t he  t ime  o f  g ran i to id  i n t ru s ion  and 
mineralization (Pollard, 2000). Comparison of 
larger and well-described IOCG deposits 
explains the geologic variety of the class as a 
whole. They occur in a wide range of different 
host rocks, among which plutonic granitoids, 
andesitic (meta) volcanic rocks, and (meta) 
siliclastic–metabasic rock associations are 
particularly importatnt. Host rocks may be 
widely similar in age to the ore (e.g.,Olympic 
Dam, Candelaria-Punta del Cobre, Raul 
Condestable) but in other cases significantly 
precede mineralization such that ore formation 
relates to a quite separate geologic event (e.g., 

Salobo, Ernest Henrt) (Williams et al., 2005). 
Major Cu-Au deposits of IOCG style are 
temporally associated with oxidized potassic 
granitiodes similar to those linked to major 
porphyry Cu-Au deposits. Main copper-gold 
deposits in IOCG provinces range from diorite 
to syenogranite in composition (Pollard, 2000). 
Different genetic models have been suggested 
for IOCG deposits that can be widly divided in 
to those including magmatic and non-magmatic 
fluid sources (as summarized by Barton and 
Johnson, 2004). Magmatic models include the 
release of oxidized, sulfur-poor, metalliferous 
brines from the coeval magmas, with ore 
deposition subsequently driven by various 
processes. The sources are variously deduced to 
have been primitive calc-alkaline arc magmas. 
Non-magmatic models can be subdivided into 
two categories, the one in which fluids are 
mainly derived from the surface or shallow 
basins, and those including fluids that have 
developed in lower to midcrustal metamorphic 
environments (Williams et al., 2005). Because 
of a lack of important data that present 
important directions for future research the 
collective model is currently clouded in 
uncertainty. 

Fig.3. Simplified geological and mineral indexes map (1:100,000 scale) of the study area (Behrouzi, 1987).
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5.  Application of the SVM in Feyyzaabad 
region

5.1. Geo-exploration evidence layers for MPM

 In this applied MPM approach for this 
study, the geo-exploration data are chose by 
using the data sets of the previous exploration 
projects and specification of IOCG deposits in 
the study area. We applied following geo-
exploration evidential layers as the most 
important criteria for prospecting the IOCG 
deposits in the study area: lithology of the host 
rock, lithology of intrusive rocks as heat 
sources, proximity to the faults, alteration 
zones, and stream sediment geochemical 
anomaly of indicator elements.

 In the current study, five information 
layers are applied to make a prospectivity map 

(Table 1). For producing the geological 
evidence layers, classified maps of host rock 
lithology, heat sources and fault were extracted 
from the 1:100000 scale geological map of the 
study area. According to 1:100000 scale 
geological map of the study area and host rocks 
of known IOCG deposits in the study area, 
white tuff breccias, ignembrite, green lapilli 
tuff, sandy tuff and granodiorites are favorable 
for IOCG mineralization, and were used in the 
integration process (Fig. 4a). 

 Spectral angle mapper (SAM) was 
performed on ASTER images of the study area 
to map zones of hydrothermal alteration and 
iron oxide/hydroxide minerals. Rocks which 
are located next to NE-SW faults are crushed 
and altered so they have maximum potential 
compared with no-fault areas (Fig.4b).

Fig.4. Geological evidential layers (a) host rock; (b) alteration zones (c) faults.
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To generate evidential map of Au and Cu 
geochemical signature (e.g, Carranza, 2008; 
Yousefi et al., 2012, 2014; Yousefi and 
Carranza, 2015) we used stream sediment 
samples results, after removing the closure 
effect with ilr transformation. The geochemical 
data were interpolated by an inverse distance 
weighted (IDW) method in order to separate the 
concentration-area (C-A) and fractal analysis 
(Cheng et al., 1994, 1996, 1997, 2000) was 
adapted for separating background and 
anomalies.  The maps of the Cu and Au 
geochemical distributions are shown in Fig.5. 
The  ana lys i s  o f  t he  1 :250000  sca l e 
aeromagnetic data showed that the magnetic 
characteristics of the area did not show any 
correlation with the known mineralization. 
Therefore, this data was not used for MPM. 

5.2 Application of the SVM

 Five evidential layers were considered as 
main criteria in order to use the SVM method. 
Different regions of interest (ROI) were 
selected, which were used as feature vectors of 
the geosciences variables and a target variable 
for classification of mineral prospectivity 
(Table 1). The target feature vector is either the 
'non-favorable' class (or 0) or the 'favorable' 
class (or 1) representing whether mineral 
exploration target is absent or present, 
respectively. For 'favorable' locations, we used 

the four known IOCG deposits and some area 
with favorable conditions for IOCG deposits. 
For 'non-favorable' locations, we randomly 
selected them. Supervised SVM classification 
methodology was applied by sigmoid kernel 
with               and r = 0. Algorithm that explains 
implementation of SVM is given below (Fan et 
al., 2008): First of all, loop the n data items and 
divide the input data set into two sets of data 
corresponding to two different categories, if a 
data item is not assigned any of the regions 
mentioned then add it to set of support vectors 
V.

 The patterns of the predicted prospective 
target areas for IOCG deposits are defined 
mostly by neighboring to NE–SW trending 
faults, vicinity to pyroclastic rocks (mainly 
tuff) and Au geochemical anomaly (Fig. 6).The 
prospective target areas that are predicted, 
occupy 5% of the study area and contain 100% 
of the known IOCG deposits (Fig. 6). 

4.3. Evaluation of the prospectivity model

 The data integration outcome is a map 
showing the favorable area of IOCG deposits 
exploration (Fig. 6). Some percentages of 
favorable areas are located close to Tannurjeh 
(Karimpour et al., 2006) (Fig.7) and Kuh-e-Zar 
deposits (Mazloomi et al., 2008) (Fig. 8) as 
known mineral deposits.

=0.25

Fig. 5.Geochemical evidential layers: (a) Au; (b) Cu .
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Fig. 6. Prospective targets area for IOCG deposits delineated by SVM.

Fig. 7. Tannurjeh IOCG deposit (a) Argillic and Argillic+Iron oxide alterations; (b) The quartz
           included gold (Au) as vein, veinlet and disseminated magnetite.

Fig. 8.  (a): The quartz and specularite veins included gold (Au) mineralization; (b) Free gold
            (Au) particles surrounded with specularite. 
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6.  Discussion and conclusion

 In the current study, the support vector 
machine (SVM) was applied as a supervised 
method in data-driven mineral prospectivity 
mapping with integrating multiple variables to 
generate a prospectivity map in 1:100000 
Feyzaabad area, in east of Iran. 

 The outcomes of the SVM method show 
that prospective target areas for IOCG deposits 
are defined mostly  by neighboring to NE–SW 
trending faults and pyroclastic rocks (mainly 
tuff) and Au-Cu geochemical anomalies. These 
outcomes show that SVM is a potentially 
effective method in order to integrate multiple 
information evidence layers in mineral 
prospectivity mapping. Also applying this 
method results the reduction of the amount of 
risk for exploratory projects managers. The 
final prospectivity model investigation (Fig. 6) 
demonstrate that beside identifying known 
IOCG deposits, which were used as training 
regions in the applied method to assess the 
SVM, the applied method has specified some 
new targets as well. So the target areas 
produced in the final prospectivity model can 
be applied for follow-up exploration of the 
IOCG deposits.
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