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Abstract

 Fractal is an applicable implement for evaluation of the complicated patterns of natural features. Geo-
informatics allow not only representing data, but also performing geostatistical analysis and building models. 
This paper investigates the deformation pattern of land surfaces applying Advanced Spaceborne Thermal 
Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) through a combined 
geo-information and fractal approach. The covering divider method is applied in order to extract fractal 
dimension of the earth surface (D ) directly for estimating surface roughness of the earth topography surf

through geographic information system (GIS) approaches. Specifying the function of the geomorphologic 
processes on the spatial variability of fractal properties of the earth surface is accessible through this 
assessment. Fractal dimension mapping us to ascertain geomorphic domains where variability of fractal 
dimension of the earth surface represents the roughness of the land form topography and is an assessment of 
texture of topography. Results show that the presented approach in this research using the presented flow 
chart provides a rapid and facile procedure to evaluate the spatial distribution of the earth surface deformation 
within geological regions. Relatively higher fractal dimensions are observed where loose alluvial deposits 
and irregularities exists whilst the lower fractal dimension represents existence of the competent formations. 
The results showed that the Kharmankuh anticline has formed in a NE-SW direction and shows nearly 
symmetrical deformation pattern.
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1.  Introduction       
    
Fractal geometry is observed within many 
natural objects and phenomena such as 
mountain chains and rivers (Mandelbrot, 1982; 
Pentland, 1984; Peitgen et al., 2013; Persson, 
2014). Measuring complicated processes of 
geological phenomena and represent into a 
single parameter, is one of the advantages of 
using fractal analysis in the geosciences which 
would be arduous to measure using just by 
classic geological approaches (Perugini, and 
Kueppers, 2012). In addition, applicable 
information about the landform surface can be 
obtained through the fractal dimension of the 
earth surface which is not presented by other 
morphometric measurements (Fedder, 1988; 
Klinkenberg, 1992; Sung et al., 1998). A basic 
assumption in geomorphometry is the close 
relation between surface characteristics and 
surface processes (Pike, 2000). This relation is 
evaluated by applying statistical approaches on 

the parameters or topographic indices which 
are determined by using (DEM) and relating 
them to the presence of certain landforms or 
geomorphic process areas and soil properties 
(Etzelmüller and Sulebak, 2000; Etzelmüller et 
al., 2001; Luoto and Seppala, 2002; McBratney 
et al., 2003; Luoto and Hjort, 2004, 2005; Hjort 
and Luoto, 2006; Mahmood and Gloaguen, 
2012;  Shen et  a l . ,  2011;  Faghih and 
Nourbakhsh, 2015a, b). To provide a large set of 
descriptors attributes from DEM in the studies 
on surface properties of landforms several 
algorithms have been proposed (Wilson and 
Gallant, 2000; Champagnac et al., 2012; 
Ramisch et al., 2012). 

 One of the phenomena that possesses 
fractal characteristics is the earth topography. 
Topographic features are created during 
cumulative influence of endogenic and 
exogenic processes operating on the earth 
surface (Burbank and Anderson, 2011; Faghih
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2. Geological Framework

 During Late Cretaceous to Recent, 
oblique convergence between and the Central-
Iranian Microcontinent and the Afro-Arabian 
continent resulted in the formation of the 
Zagros Mountain Belt (Talbot and Alavi, 1996; 
Stampfli and Borel, 2002; Golonka, 2004). 
From the eastern Turkey to the southern Iran, 
this belt stretches 2000 km long with NW–SE-
trend (Mouthereau et al., 2012). Mountain 
Front Fault, the High Zagros Fault and the Main 
Zagros Thrust, that are regional-scale faults, are
distinguished by distinctive structural and 
lithologies features(Mobasher and Babaie, 
2008; Sarkarinejad and Azizi, 2008; Faghih and 
Nourbakhsh, 2015a). They mark several 
structural zones which are running parallel to 
the suture zone and are known as classical 
subdivision of this belt (Sarkarinejad and 
Ghanbarian, 2014) (Fig. 1). To the northeastern 
side the Simply Folded Belt is bounded by the 
High Zagros Fault, separating it from the 
Imbricate Zone, and delimited to the 
southwestern side by the Mountain Front Fault 
(MFF). A clustering of seismic events 
a s c e r t a i n e d  t h e  M F F  a s  a  r e g i o n a l 
morphotectonic feature (Jackson and 
McKenzie, 1984; Berberian, 1995; Engdahl et 
al., 2006) which the level of the revealed 
formations of the Zagros sedimentary layers 
show a sudden change (Falcon, 1969). In the 
Fars Province the base of this stratigraphic pile 
is occupied by a thick Neoproterozoic 
evaporate unit (Hormuz Formation), providing 
an efficient widespread ductile detachment 
horizon above the metamorphic basement 
(O'Brien, 1950; Colman-Sadd, 1978). 

 Development of SW-verging folds with 
NW–SE trending and NE-dipping thrusts in the 
Phanerozoic sedimentary strata are the result of 
the SW–NE convergence. These structures are 
positioned above the Neoproterzoic Hormuz 
evaporate detachment zone and Afro-Arabian 
basement (Kadinsky-Cade and Barzangi, 1982; 
Alavi, 1994). The presence of the Hormuz 
Formation, which is too deep to be drilled, 
however, it has been reported from various salt 
plugs that pierced the whole sedimentary 
carapace of the Fars Arc and are exposed at 
surface (Aubourg et al., 2008). 

 The case study is the Kharmankuh (Fig. 
2) that is a dome shaped anticline which is 

o osituated at N 14  29' 00” and E 40  53' 00”.. This 
mountain has maximum elevation of 3183m 
and has a steeper left side limb. The Jahrum 
Limestone Formation and Asmari Formation 
are exposed on the surface of this anticline 
(Motiei, 1993). Some researchers suggest that 
this anticline has formed due to a combination 
of diapirism of Hormuz Salt and continued 
movement of the Sarvestan Fault (Dehbozorgi 
et al., 2010 and references therein).

 Some of the previously formed folds 
deformed by the Sarvestan fault (~78 km 
length) with dominant strike-slip movements, 
which is cutting across the Zagros fold-thrust 
belt (Berberian, 1995). It has also led to several 
hundred meters uplift of the eastern block and 
caused the development of prominent fault 
scarps and uprising of active diapirs such as the 
Sarvest and iapir (Dehbozorgi et al., 2010).

3. Materials and Methods

 Geomorphic features are investigated 
on their fractal properties by some researchers 
(e.g. Mark, 1984; Tarboton et al., 1988; Andrle 
and Abrahams, 1989; La Barbera and Rosso, 
1989; Liu, 1992; Nikora and Sapozhnikov, 
1993; Klinkenberg, 1994; Andrle, 1996; 
Rodriguez-I turbe and Rinaldo,  1997; 
Goodchild, 2011; Faghih and Nourbakhsh, 
2015b).Triangular prism area, box-counting, 
fractional Brownian model, projective 
covering divider method and the covering 
divider method are the variety of methods that 
have been proposed to determine the fractal 
dimension of surfaces (Burrough, 1983; 
Shelberg et al., 1983; Clarke, 1986; Mark and 
Aronson, 1984; Falconer, 1990; Xie and Wang, 
1999; Faghih and Nourbakhsh, 2015b).

 The covering divider method is used for 
taking information about anisotropy and 
general complication of surface properties of 
the earth surface features. This approach for 
determination of the fractal dimension is 
considered a well-established and commonly 
applied tool for nearly any arbitrary structure.
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Maps showing (a) geographical position of study area by a hollow quadrangle at 
southwestern of Iran, MRF (Main Recent Fault), MZT (Main Zagros Thrust), MZF (Minab-
Zendan Fault), SF (Sarvestan Fault), KFZ (Kazerun Fault Zone), MFF (Mountain Front 
Fault) and (b) the common classification of Zagros Mountain Belt, UDMB: Urumieh-
Dokhtar Magmatic Belt, HP-LT SSMB: high pressure-low temperature Sanandaj-Sirjan 
metamorphic belt, HT-LP SSMB: high temperature-low pressure Sanandaj-Sirjan 
metamorphic belt, ZFTB: Zagros fold-thrust belt, ZSFB: Zagros simply folded belt. These 
zones are illustrated with dashed lines through the figure and approximate width of the zones 
are presented in continuation of dashed lines at the left side of the figure.

Fig. 1. 
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To compute (D ) some of researchers applied surf

the covering divider method (Richardson, 
1961; Mandelbrot, 1967; Goodchild, 1982; 
Aviles et al., 1987; Snow, 1989; Beauvais and 
Montgomery, 1997; Wilson and Dominic, 
1998; Xie et al., 1998). Fractals considered as 
self-similar when an object is exactly or 
approximately similar to a part of itself or self-
affine or self-affine when objects are scaled by 
different amounts in the x- and y-directions. 
Surface roughness of Earth surface is 
considered as self-affine fractals (Turcotte, 
1997). This work is a complementary study on 
the  Faghih  and Nourbakhsh (2015b) 
methodology with more resolution and 
enhanced by a geo-information technique. In 
our previous work, a window size of 250m x 
250m was applied for the extraction of σ of 
elevation data as the smallest detecting window 
but, in the current work this is 100m x 100m. 
Also, in the present work we have presented a 
flow chart that with aid of GIS-based spatial 
analysis algorithms enhanced extraction of 
fractal dimension of earth surface topography. 
In this study we have prepared a flow chart (Fig. 
3) of the previously methodology presented by 
Faghih and Nourbakhsh (2015b) that is done 
with aid of ArcGIS spatial analyst algorithms. 
Between standard deviation of surface height 
and sampling window area of the surface, 
which is considered as a self-affine fractal, a 
power low relation exists (Rahman et al., 2006). 

Roughness-surface derives from the following 
formula(Turcotte, 1986, 1997):

 Here σ stands for the average standard 
deviation of elevation data for corresponding      
τ -area subdivisions of the earth surface. Hurst 
exponent (H) (Fedder, 1988) contribute in 
calculation of roughness-surface fractal 
dimension (D ) through a relationship as surf

follow:

 Where in a double logarithmic diagram 
of the τ and σ, we can rewrite the relation (1) as 
follow:

 σ can be calculated using an equation as 
follow:

 where x is a value in the elevation data 
set, ẍ is the mean of all values in the elevation 
data set and n is number of values in the 
elevation data set. Initially, τ equals the area of 
the surface and is subsequently diminished in 
size by a factor of 4 at each step. 

Fig. 2. The study area (a) Hillshade image of the Kharmankuh anticline with representation main
           structural elements within the study area and (b) geological map of the study area.
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 As the (τ) decreases, σ in 1, and then 4, 
16, 64, etc. subdivisions of the surface is 
derived from the average standard deviation of 
the elevation data (Figure 3). If data possess 
fractal distribution, then double logarithmic 
diagram of the τ and σ show linear trend and 
have slope H (Fig. 4). This approach is used to 
calculate the (D ) in this study. In this research surf

we have used 15m resolutions ASTER GDEM 
V.2 with (Tachikawa et al., 2011) as the source 
of elevation data. For extracting σ an area with 
100m x 100m dimension is considered as the 
smallest window which is include10 true 
elevation data pixels of DEM. The target 
window is 1500m x 1500m which includes over 
2500 pixels of DEM. In total168 target 
windows have been analyzed, which cover the 
Kharmankuh anticline and its surrounding land 
forms.

4.  Results and Discussions

 The fractal dimension can be obtained 

from the slope of linear alignment of data points 
in a double logarithmic diagram of the τ and σ. 
The study area is designated as 18 km × 21 km 
which covers the Kharmankuh anticline and its 
surrounding landforms. To extract the surface 
deformation pattern, the fractal dimension of 
168 target windows is calculated. The 
measured values of the (D ) show a range of surf

2.49 to 2.79 which are spatially distributed 
across the study area (Fig. 5). The output of 
geo-informatics is often associated with a map. 
A map is only one way to work with geological 
data in a geo-information approach and only 
one type of product generated by geo-
informatics. Furthermore, geo-informatics can 
provide more problem-solving capabilities than 
simple mapping programs (Nourbakhsh, 2014). 
In the study area, variability of (D ) is shown surf

by a map which represents the obtained data.

 When the surface variability is small 
locally, but with distance rises rapidly, H 
increases toward its upper limit, whereas, 

Fig. 3. The presented flow chart in this study with aid of GIS-based spatial analysis algorithms enhanced
           extraction of fractal dimension of earth surface topography.
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A sample of procedure for calculation of the surface fractal (a) Schematic representation 
of the covering divider method that shows subdivisions of the surface with decrease in size 
by factor 4. (b) An example of the Log-Log plot of the average standard deviation of 
topography versus widows' area that is calculated within the study area. H is Hurst 
exponent and D is fractal dimension.

Fig. 4. 
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H is small when the surface shows slow 
increase at large distances and high local 
variability (Sung et al., 1998; Sung and Chen, 
2004). It suggest that high fractal dimension 
points out a slow change of topography at a 
large distance and a quick change of 
topography in a local area, on the other hand a 
small local change in topography and large 
change at a long distance possess low fractal 
dimension (Sung et al., 1998; Sung and Chen, 
2004).This statement can be seen in the Figure 
4 that the steep limbs with quick change in 
elevation have lower fractal dimension and the 
surrounding low lands and top of the dome 
shaped anticline have relatively higher fractal 
dimension. Figure 4 suggests that the surface 
deformation is nearly symmetrical and 
elliptical in shape with a NE-SW strike. The 
deformation style of the Kharmankuh anticline 
and its nearby landforms represented in the hill-
shade image in Figure 2a.

 Topography at long wavelength produced 
by tectonic movements thus led to low fractal 

dimension of the earth surface (Sung et al., 
1998; Sung and Chen, 2004; Bi et al., 2012; 
Ramisch et al., 2012). At the midway of the 
limbs the fractal dimension is relatively lower 
than the lower and upper parts of the limbs. 
Inc reas ing  su r face  roughness  i s  the 
consequence of erosional processes and play a 
role in determination of the fractal dimension of 
earth surface. Lithology is a significant 
parameter that affect erosion, and consequently 
the related fractal dimension. Smooth surfaces 
are the result of diffusive and depositional 
processes which result in lowering of fractal 
dimensions. High fractal dimension is 
characteristic of the loose alluvial deposits that 
facilitate producing of high frequency 
component topography (Sung et al., 1998; Sung 
and Chen, 2004; Bi et al., 2012; Ramisch et al., 
2012).

 Slope and time are two affecting factors on 
diffusive processes. Longer history of 
development make landforms with underlying 
more competent rocks has been smoothed to a

The presented map showing spatial distribution of surface fractal dimension (Dsurf) of the
landscapes in the study area. The roughness-surface fractal dimension of 168 target windows
for extraction of surface deformation pattern is calculated that have a range from 2.45 to 2.79.

Fig. 5. 
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certain extent by diffusive processes and 
consequently possesses lower fractal 
dimension. Whilst high fractal dimension can 
be observed in recent  sediments and 
incompetent lithologies which has not been 
affected by diffusive processes (Sung et al., 
1998; Sung and Chen, 2004). Insensitivity of 
competent formations to erosion lead to low 
frequency competent of topography and 
consequently lower fractal dimension. 
Furthermore, this low fractal dimension is the 
result of diffusive mass-wasting processes that 
make mountainous areas smooth (Chase, 1992; 
Sung and Chen, 2004; Bi et al., 2012). Nearly 
all of the Kharmankuh anticline in the study 
area consists of carbonate composition of the 
Asmari-Jahrum Formation with more 
competency than the loose sediments that cover 
the surrounding landforms. The high frequency 
competent is not produced in the Asmari-
Jahrum Formation because it is more resistant 
to erosion and this contrast in competency 
causes a relatively lower fractal dimensions 
(Faghih and Nourbakhsh, 2015b).

 The southern and southeastern side of 
the Kharmankuh anticl ine have more 
considerable drainage system than the northern 
and northwestern side of it, causing higher 
variability of topographic characteristics, more 
alluvial deposits and steep slopes formed by 
erosion which consequently led to a relatively 
higher fractal dimension.

5. Conclusion

 The fractal dimension of the earth 
surface gives beneficial information about the 
earth surface and for differentiation of rock 
units in different geological environments is 
considered as an applicable parameter. For a 
better understanding of complete topographic 
characteristics of the earth's surface it is 
essential to apply a direct determination of the 
fractal dimension approach. Covering divider 
method applied in this work to calculate the 
texture of topography within a region of the 
Zagros Mountain of Iran. Direct determination 
of the earth's surface fractal dimension is 
outcome of the obtained data. High fractal 
dimension is the result of tectonic activities that 
causes to formation of loose alluvial deposits 
and irregularities possess high fractal 
dimensions and the competent formations show 

lower fractal dimensions. The roughness of 
landform that is a measure of the variability of 
topographic heights is shown by the fractal 
dimension of the earth surface. Integration of 
geo-information approach with covering 
divider method for direct extraction of 
roughness-surface fractal dimension of 
topography yield a rapid and facile way to 
determine the distribution of the earth surface 
deformation pattern in different regions. The 
presented flow chart in this research with aid of 
GIS-based spatial analysis algorithms 
enhanced extraction of fractal dimension of 
earth surface topography.
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