PETROLOGY OF DIORITES FROM THE "KOHISTAN SEQUENCE", SWAT, NORTHERN PAKISTAN. A GENETIC INTERPRETATION AT PLATE SCALE

M. Majid

ABSTRACT

Diorites and related rocks of the calc-alkaline nature include by far the most daminant rocks of various composite plutons extensively distributed within the suture zone in the Kohistan Himalayas in northern Pakistan. The main Himalayan suture zone has been recently traced across Kohistan through the Districts of Hazara, Swat, Dir and Mohmand by Tahirkheli *et. al.* (1979).

The development of the thick complex of various types of diorite, granodiorite, hypersthene gabbro and calc-alkaline volcanics (andesite-dacite-rhyolite) within the suture zone in Kohistan is unique in nature because along the Tsang Po and Indus valley in the east, the suture zone is characterized by a belt of flysch and volcanics with some ophiolites and "melanges" (Gansser, 1964, 1977) and to the west in Afghanistan it is marked by large "nappes" of typical ophiolitic rocks.

In a tectonic discussion of the Kohistan area it has been pointed out that igneous rocks within the "Kohistan Sequence" represent products of calcalkaline activity, associated with the subduction of the floor of the former Tethyne ocean under a marginal basin. The mineralogical and chemical constraints of the diorites and related rocks described in this paper from the Kalam area (between latitude 35° 15' to 35° 52' N and longitude 72° 20' to 72° 27' E) favour the possibility of their derivation as a result of the active consumption of the oceanic crust dragged beneath the marginal basin while the concentra-

Department of Geology, University of Peshawar, Pakistan

11 × GEOLOGY OF × × × × × × 11 × × × × 11 0 11 72-3Ó × × × 11 × 11 11 × × × × 11 × () × KALAM DIORITE × 11 × × × × Ň N × ×١ × × × 258 × × × × × × ×ĸ hrit ·NO × × × × × edam × COMPLEX. × 19 × × × AT ×s × × × × lank ia × × × × × × × × × × × × × SWAT 9 Miles. × × × × × × × × × × × × × × KOHISTAN × 6734 ×I 5 3. 30 TP v v < FAULT DIORITE CONTACT, DASHED WHERE INFERRED NORITE KALAM GROUP (Metasedimentary rocks) UTROR VOLCANICS SMOKY DIORITE GNEISSOSE QUARTZ DIORITE (Associated metasediments) THE DESHAI DIORITES (Associated metasediments The kohistan basic complex Fazal Ahma

means an intrusive. The M.M.T. is clearly observable in areas south of Patan and can be traced to the west through Shangla Pass across the Swat valley near Khwazakhela and the Dir valley at Zullum.

THE KALAM DIORITES

Petrography

Out of 22 samples obtained from various diorite occurrences within the suture zone, 14 were selected for thin section study. The diorites are medium to coarse grained rocks characteristically rich in plagioclase. The plagioclase content varies from 73% (Sp. No. 7) up to 85% (Sp. No. 6) with only minor amounts of alkali feldspar and quartz. Colour index ranges from 8 to 22. The data points of these rocks plot in field 10 on the double triangle-quartz-alkali feldspar-foids plagioclase of the I. U. G. S. classification (1973). The average composition of the plagioclase is in the andesine range except in samples 2,6 and 5A where the anorthite content of the plagioclase is slightly more than An 50%. Almost all the samples studied in thin sections are fairly fresh.

On the basis of the dark coloured constituents, diorites are distinguished into (a) hornblende-biotite diorites and (b) pyroxene-biotite diorites. Hornblendebiotite diorites are the extensively developed rocks in the studied area while the pyroxene-rich varieties are reported only from a limited area north of Diwangar, in the vicinity of Asrit and in a stream section west of Kedam. Biotite is invariably present in thin sections of both types of diorite but the former group contains a green hornblende while the later variety is characterized by having abundant pyroxene (clino and/or orthopyroxene), with only traces of amphibole in certain cases. Rocks containing approximately equal proportions of pyroxene and hornblende are, however, not uncommon (e. g. Sp. No. 11, table 1).

Hornblende-biotite diorites. These are mostly coarse-grained rocks with a spotted appearance and are extensively developed east of Dewangar and at Deshai. Few samples of these rocks were also obtained for thin section and chemical study from Gabral and Kedam areas. Modal compositions are given in table 1.

Major portion of each section consists of mineral grains ranging in size from 1.3×0.9 mm up to 2.25×1.5 mm across. Rounded crystals of apatite in thin section are approximately 0.3 mm in diameter. Plagioclase is fresh, occasionally slightly zoned and the anorthite contents range from 34% (Sp. No. 21) up to 60% (Sp. No. 2).

Sample No.	1	2	3	4	5	6	7	10	11	12	20	21	22	5 A
Plagioclase.	73	80	81	79	75	85	73	83	82.5	82	77	7 7	77.5	82
K-feldspar.	2	trace	s 3	5	3		2	1	<u></u> 1	•••	1		1	traces
Quartz.	3	5	5	8	6	4	5	6	3	3	.6	.4	3.5	6
Clinopyroxene.	15					•••			4.5	•••	9		8	
Orthopyroxene.											. 4	••••	6	
Biotite.	4	5	4	5	4	2.5	6	3	3	7	3	12	2	5
Hornblende.	1.5	8	7	3	12	6	12	6	5	8	•••	6		5
Apatite.	0.5	1	trace	es		0.5		trace	es					•••
Epidote.			•••			05		•••	•••			trace	s	
Sphene.			•••				trace	es	e-1+		, '		·	••••
Opaque.	1	2			trac	es 1.5	2	1	1			2	1	traces
An % Plagioclase.	48%	60%	42%	38%	40%	56%	40%	36%	42%	44%	56%	34%	44%	53%
Mafic index.	21.5	15	11	8	16	1 0 .5	20	10	9	15	16	20	16	10

TABLE 1. MINERAL COMPOSITION OF THE KALAM DIORITES.

Biotite and green hornblende are important dark-coloured constituents. Hornblende is usually more abundant than biotite except in specimens 4, 12 and 21 which contain proportionally more biotite than hornblende. Section 4 also exhibits maximum amount of quartz and K-feldspar among the studied samples. Hornblende-biotite diorite from the Gabral area (smoky diorites of Khalil and Afridi, 1973) are comparatively poor in both quartz and alkali feldspar. Alkali feldspar in these rocks is present only in trace amounts. Section 11 which was collected near Gabral Village contains upto about 4% clinopyroxene in addition to hornblende.

Pyroxene-biotite diorites. These are dark grey-coloured medium-grained rocks with comparatively high concentrations of ferromagnesian minerals. Clinopyroxene, orthopyroxene and biotite are important dark-coloured phases present. The proportion of clinopyroxene to orthopyroxene is somewhat variable. Specimen No. 1 contains clinopyroxene as the only pyroxene with traces of hornblende and shows the highest colour index (22) for this type of diorites. There are samples, however, which contain roughly equal amount of ortho and clinopyroxene.

Plagioclase in these rocks is highly clouded due to the presence of minute dark particles. Its composition is An 47% on the average. Specimens 20 and 22 contain 4 and 6% hypersthene respectively. The hypersthene is pleochroic from light pinkish to faint green.

Chemistry

The chemical composition of the collected samples were determined by X. R. F. analyser. The total iron as $Fe_2 O_3$ from the X. R. F. analyses was further distinguished for each sample into FeO and Fe_2O_3 by the ammonium metavanadate method (Wilson, 1955, 1960). The C. I. P. W. norms were calculated using a computer program. The major and trace element concentrations are listed in tables 2 to 7.

The K_2O contents of the analysed samples are constantly less than 2.5% except in case of the specimens 17 and 4 which fall in the high-K diorite and granodiorite fields respectively. (Fig. 1)

Sample No.	3	4	5	6	7	10	12	15	16	19	20	21	22	5 A
SiO ₂	58.52	62 07	58.87	58.90	57.74	59.37	64 30	58.18	58.52	59.02	59.30	63.14	58.76	59.70
Al ₂ O ₃	16.00	15.16	16.09	15.78	16.75	15.88	13.62	14.92	15.85	15.46	15.50	15.10	14.89	15.38
Fe ₂ O ₃	2.68	1.9 2	2.64	3.11	2.59	2.84	2.18	3 33	5.15	2.32	3.41	2.34	1.62	2.42
FeO	4.71	3.85	4.54	4.53	4.81	4.10	4.04	5. 2 4	1.64	4.32	3.44	3.12	5.10	4.48
MgO	4.00	3 32	4.09	4.23	4.89	4.15	3.04	4.08	5.65	4.7 9	4.54	3.33	5.89	4.24
CaO	7.41	5.90	7.11	7.26	7.99	7.18	5.27	6.38	8.05	6.4 6	6.92	5.91	6.75	6.67
Na ₂ O	2.80	2.74	2.42	2.65	2.43	3.11	2.42	4.19	2.45	3.49	3.06	3.57	2.81	2.94
K ₂ O	1.90	2. 96	2.40	1.67	1.15	1.56	2 .39	0.95	1.16	1.98	1.68	1.30	1.97	2.15
TiO ₂	0.72	0.54	0.66	0,68	0.68	0.64	0.76	1.02	0.76	0.80	0. 91	0.61	0.80	0.67
MnO	0.15	0.42	0.14	0.14	0.15	0.13	0.12	0.20	0.12	0.12	0.12	0.10	0.12	0.14
P ₂ O ₅	0.21	0.12	0.16	0.14	0.21	0.12	0.17	0.30	0.20	0.24	0.22	0.16	0.21	0.22
Total :	99.1 0	99.00	99. 12	99 .09	99 . 39	99.08	9 8.31	98. 79	9 9 .55	99.0 0	99.1 0	98.68	98.9 2	99.01

TABLE 2. CHEMICAL ANALYSES AND C. I. P. W. NORMS OF THE NORMAL DIORITES,
GRANODIORITE AND SPECIMENS 12 AND 21.

Continued	Tab	le	2.
-----------	-----	----	----

C. I. P. W. NORMS.

Sample No.	3	4	5	6	7	10	12	15	16	19	20	21	22	5 A
Qtz.	13.34	17.13	14.09	15.32	14.21	14 26	24.09	11,02	16.84	10.69	15.10	20.37	11.21	13.78
Or.	11.23	17.49	14.18	9.87	6.80	9.22	14.12	5.61	6.86	11.70	9.93	7.69	11.64	12.71
Ab.	23.70	23.19	20.48	22.42	20.56	26.32	20.48	35.46	20.73	29 53	25.89	30.21	23.78	24.88
An.	25.48	20.32	25.95	26.23	31.40	24.76	19.24	19.10	28.83	20.67	23.60	21.34	22.20	22.42
Di.	8.05	6 64	6.71	7.17	5.55	8.12	4.72	8.60	7.63	8.01	. 7 38	5. 5 7	8.02	8. 0 1
Hy.	11,58	9 84	12.26	11.96	15.34	10.79	9 86	11.54	10.53	12.99	10.04	8.60	17.72	12.06
Mt.	3.89	2.78	3.83	4.51	3.78	4.12	3.16	4.83	3.48	3.37	4.95	3.39	2.35	3.51
11.	1.37	1.03	1.25	1.29	1.29	1.22	1.44	1.94	I.44	1.52	1.73	1.16	1.52	1.27
Ap.	0.45	0.28	0.37	0.33	0.49	00.28	0.40	4.83	0.46	0.51	0.51	0.37	0.49	0.28
T. T. Index.	48.27	57.81	48.75	47.61	41.57	49 .80	58.69	52.09	44.43	51.92	50.92	58.27	46.63	51.37

*Sp. No. 4 Granodiorite.

1. 1.

	Sample No.	i st	34	5	6	7	10	12	15	16	19	20	21	22	5A
Ce		47	32	34	45	45	67	46	40	37	54	44	42	63	43
Nd		21	7	13	14	11	21	15	22	16	14	17	11	18	10
Ba		597	676	666	497	360	604	560	381	350	263	491	389	461	630
Cr		20	12	18	15	10	20	27	13	44	38	40	20	165	13
Ti		4003	3031	3900	4065	3835	3572	4341	5957	4268	4748	5324	3585	5115	4110
v		141	130	160	175	170	149	132	148	140	158	170	136	163	156
Sr		546	407	352	405	429	428	218	296	669	373	309	471	362	369
Zr		208	219	238	241	220	212	271	220	217	230	259	273	251	243
Ni		7	9	8	10	7	13	12	5	38	31	38	19	92	13
Rb		75	80	76	71	4 4	47	69	32	75	98	71	59	95	103
у.		22	21	24	21	22	24	24	26	20	20	21	19	21	18
Zn		69	62	70	74	75	70	57	86	71	68	71	63	72	74
K/R	b	210	307	26 3	195	219	275	28 6	247	128	168	198	183	172	165
Ba/I	Rb	7.96	8.45	8.76	7.0	8.18	12.85	8.11	11.90	4.66	2.68	6.91	6.59	4.85	5.83
Ba/S	ir	1.09	1.66	1.89	1.22	0.83	I.41	2.56	1.28	0.52	0.70	1.58	0.82	1.27	1 70
Rb/S	Sr	0.13	0.19	0.21	0.17	0.10	0.10	0.31	0.10	0.11	0.26	0.22	0.12	0.26	0.29

TABLE 3. TRACE ELEMENT CONTENTS OF THE NORMAL DIORITES, GRANODIORITE* AND SPECIMENS 12 AND 21. (IN PARTS PER MILLION.)

*Sp. No. 4 Granodiorite.

Sample No.	1	2	8	9	11	13	14
SiO ₂	55.42	53.00	55.07	55.55	55.27	55.64	54.25
Al ₂ O ₃	15.74	16.14	17.10	17.22	15.76	16.00	16.89
Fe ₂ O ₃	2.45	3.30	3.38	3.34	3.19	2.67	2.61
FeO	6.56	6.73	5.24	5.36	6.05	6.31	6.25
MgO	4.88	5.75	5.01	4.81	6.13	4.56	5.50
CaO	8.35	9.85	8.75	8.90	8.7 6	8.75	9.13
Na ₂ O	2.77	2.17	2.63	2.40	2.18	2.17	2.87
K ₂ O	1.15	0.82	1.32	0.93	0.78	0.81	0.81
TiO ₂	1.26	1.41	0.76	0.82	0.92	0.95	0. 9 2
MnO	0.18	0.22	0,17	0.15	0.17	0.17	0.16
P ₂ O ₅	0.43	0.32	0.21	0.21	0.19	0.20	0.19
Total :	9 9,19	99. 71	99 64	99.63	99.40	99.2 3	9 9.58

TABLE 4. CHEMICAL ANALYSES AND C. I. P. W. NORMS OF THE LOW SILICA DIORITES.

C	continued Table 4.		С	. I. P. W. N	ORMS.		<i>9</i> 0	
	Sample No.	1	2	8	9	11	13	14
ç	ltz.	9.67	8.04	8.81	11.71	11.36	8.67	6.40
C	r.	6.80	4.85	7.80	5.50	4.61	7.79	4.79
A	.b.	23.44	18.36	22.25	20.31	18.45	26.83	24.29
A	n.	27.12	31.88	31.00	33.47	30.91	27.04	30.81
D	Pi.	9.40	12.09	8.96	7.54	9.14	12.33	10.77
H	ly.	15.84	16.17	14.04	14.23	18.12	13.45	16.55
M	ſt.	3.55	4.79	4.90	4.84	4.63	3.87	3.79
IJ	•	2.39	2.68	1.44	1.56	1.75	1.81	1.75
A	p.	1.00	0.74	0.49	0.49	0.44	0.46	0.44
Т	. T. Index.	39.90	31.25	38.86	37.51	34.42	40,28	35.47

4 0 L	1	2	8	9	11	13	14
						<u></u>	
Ce	53	61	49	92	45	40	37
Nd	22	16	18	18	-18	14	18
Ba	384	349	423	3.65	3.19	422	437
Cr	20	23	12	12	30	18	30
Ti	7132	7817	4408	5027	5366	5424	5543
V	204	199	197	204	218	229	271
Sr	325	369	444	411	353	350	351
Zr	224	205	212	215	223	225	223
Ni	8	14	8	6	24	22	35
Rb	29	33	58	27	25	32	31
Y	29	24	22	24	25	24	23
Zn	92	96	82	84	78	88	96
K/Rb	332	205	190	287	264	211	218
Ba/Rb	13.24	10.57	7.29	13.51	12.76	13.18	14.09
Ba/Sr	1.18	0.94	0.97	0.88	0.90	1.20	1.24
Rb/Sr	0.08	0.08	0.13	0.06	0.07	0.09	0.08

TABLE 5. TRACE ELEMENT CONTENTS OF THE LOW SILICA DIORITES (IN PARTS PER MILLION)

HIGH-K ANDESITE AND WITH SIMILAR CALEDONIAN IGNEOUS ROCKS.										
	1	2	3	4	5	6	7	8		
SiO ₂	56.11	59.40	60.80	56.17	57. 9 3	60.25	60.10	53.46		
Al ₂ O ₃	16.56	16.30	16.80	16.80	15.87	17.35	16.29	18.40		
FeO	6.99	6.03	5.13	6 63	6.21	4.83	5.27	7.09		
MgO	7.51	2.86	2.15	5.06	4.95	2.95	2.82	3.54		
CaO	6.91	5.68	5.60	6.40	5.69	3.71	4.85	8.26		
Na ₂ O	2.22	3.83	4.10	3 87	3 20	4.56	3.92	4.00		
K ₂ O	3.04	2.87	3 25	2.92	3.45	3.59	3.41	2.64		
TiO ₂	0.88	0.59	0.77	1.08	1.14	0.93	1.17	1.51		

TABLE 6. CHEMICAL COMPARISON OF THE HIGH-K DIORITES FROM THE STUDY AREA WITH HIGH-K DIORITES FROM YEOVAL COMPLEX, AUSTRALIA; WITH TAYLOR'S HIGH-K ANDESITE AND WITH SIMILAR CALEDONIAN IGNEOUS ROCKS.

1. High-k diorite. Kalam area.

2. Average high-k diorite. Yeoval complex. Australia (Gulson et. al. 1972, table 2).

3. High-k andesite. (Taylor, 1969, table 1).

4. Average two-pyroxene biotite diorite (High-k). Comrie diorite complex, Scotland. (Majid. 1974).

5. Average hypersthene biotite diorite. (High-k). Comrie diorite complex, Scotland. (Majid. 1974).

6. Average of 8 analyses of high-k diorite. (Porphyritic hornblende biotite granodiorite) Foyers granitic complex. (Marston, 1971, analysis 8, 9, 10, 11, 12, 13, 14, 15).

7. High-k diorite. (Tonalite) Cairnsmore of Carsphairn complex. (Deer, 1935, Analysis. 5).

8. Augite biotite diorite (high-k). Comrie diorite complex, Scotland. (Majid, 1974).

TABLE 7. TRACE ELEMENT CONTENTS OF THE HIGH-K DIORITES (IN PARTS PER MILLION) 4612 236 242 242 45 45 150 18 1.91 1.18 1.18 0.61 168 16 38 1 41 Sample No. K/Rb Ba/Rb Ba/Sr Rb/Sr BRC 2 X X X X X 5 143

The boundary lines between the four distinct chemical varieties of diorite and granodiorite (Gulson, Lovering, Taylor, and White, 1972) on the K_2O vs. SiO₂ diagram have been drawn according to the intervals suggested by Taylor (1969). The data points of 6 samples plot in the low-silica diorite area while majority of the specimens are normal diorites. Samples 21 and 12 contain 1.3 and 2.39 % K_2O respectively with SiO₂ concentrations much more than what is expected for diorites with such K_2O in the studied area. They fall, therefore, outside the area of diorites defined in fig. I. The grouping of the analysed specimens into low-silica diorite, normal diorite, high-K diorite and granodiorite has, however, no petrographic significance.

The analyses of specimens 21, 12, and 4 (granodiorite) however, constitute a continuous series with the diorites when the variation trends on the silica variation diagram for major oxides are projected into the high silica portion. There is, however, a wide compositional gap (SiO₂ 53.64 to 57.74 %) between the low-silica and normal diorite types in figure 2. The high-K diorite characteristically shows slightly high Al_2O_3 , MgO and $Na_2O + K_2O$, and low CaO and Fe₂O₃.

The distinction between various types of diorite is not apparently evident on the T. T. index variation diagram (Fig. 3) where the data points form a single scattered trend. The position of the high-K diorite is much displaced for MgO, $(Na_2O + K_2O)$ and CaO from the general variation trend in fig. 3.

The plot of K_2O vs. CaO for the analysed samples exhibits that the rather single scattered trend in diorites on the silica and T. T. index variation diagram may be actually consist of 3 separate curved lineages with low-silica diorite—normal diorite—granodiorite series as the major series in the area. Analyses of samples 12 and 21 fall on smooth curves in figures 2 and 3 but on K_2O vs. CaO figure these constitute a distinct trend at the lowest potasium level.

Fig. 5 is an F. M. A. plot of the analysed samples. A non-iron enrichment trend is illustrative of their calc-alkaline nature. The three series illustrated in fig. 4 are, however, not marked on the triangular plot of $(FeO + Fe_2O_3) - MgO - (Na_2O + K_2O)$.

FIG. 3. T.T. INDEX VARIATION DIAGRAM FOR THE STUDIED SAMPLES.

FIG. 2. MAJOR OXIDES PLOTTED AGAINST SIO2 FOR THE KALAM DIORITES.

& GRANODIORITE, D SP. No. 21, x SP. No. 12 + HIGH-K DIORITE . LOW-SILICA AND NORMAL DIORITES.

Origin of the Kohistan calc-alkaline association.

Based on the results of their experimental work Brown and Fyfe (1970) and Brown (1973) suggested the possibility af derivation of diorite-granodioritsgranite by the partial fusion of various quartzo-felspathic mineral mixes. Experiments were carried out at pressure and temperature ranges which were considered appropriate for melting within the crust. The results are shown in fig 7. From the diagram it is clear that if the homogeneous crustal material is subjected to increase temperature and pressure during metamorphism, partial melting would produce a series of liquid varying in composition from granite to granodiorite and diorite.

According to these authors true granitic rocks represent the products of partial melting at the lowest temperature and shallowest level where as granodiorite and diorite are generated at progressively deeper crustal levels.

The Kohistan sequence, with the exception of post tectonic granitic intrusion, does not include typical sialic rocks. Morever, the observed Rb/Sr ratios in the Kalam diorites indicate a source region surely not of the sialic character because these values (tables 2 to 7) are distinctly different from the normal average for crustal rocks (about 0.25, Turekian and Kulp, 1956).

The idea of contamination of any type of basalt, with the granitic material to produce calc-alkaline igneous rock series (Daly, 1933; Tilley, 1950; Kuno, 1950; Water, 1955; aud Wilcox, 1954) is greatly hindered by very similar trace element contents especially of V in the three types of basalt and in the analysis of the more basic diorite in the area. (Table 8). If the hypothesis of contamination is accepted then simple bulk mixing of granite and basalt in the proportion (1:1) which approximate to diorite major element composition would dilute the V content in basalt by a great factor because granites contain typically very low concentration of V. (10 P. P. M. Tavlor, 1968). The diorites will then show V P.P.M. much lower than basalt.

There remain for consideration the assumption of a perental calcalkaline liquid whose evolution within the segment of the Himalayan orogen between Afghanistan border and Nanga Parbat can be explained as a consequence of a descending oceanic plate during the process of collision of the Indian and Asian continents.

		1		0.000
a a ta	1	2	3	
SiO ₂	49.2	51.7	53.00	21
Al ₂ O ₃	15.7	16.9	16.14	
FeO	11 2	10.4		
MgO	8.7	6.5	5.75	
CaO	10.8	11.0	9.85	
Na ₂ O	2.3	3.1	2.17	۲
K ₂ O	1.0	0.4	0.82	
TiO ₂	1.8		1.41	
Р.Р.М.			4. ¹⁹	
Ni .	120	25	14	
Cr	130	40	23	
V	200	250	199	
V/Ni	1.7	10.00	14	÷

TABLE 8. MAJOR ELEMENT AND FERROMAGNESIAN TRACE ELEMENT COMPOSITION OF BASALT* AND BASIC DIORITE (KALAM DIORITE-GRANODIORITE SERIES).

1. Alkali and tholeiitic basalt.

2. High-Al basalt.

1.1.1

3. Basic diorite (Kalam diorite-granodiorite Series).

*Major and trace element data of basalt taken from Taylor (1969).

Table 9. Approximate chemical composition of parent liquid of the Kohistan calc-alkaline suite and its comparison with parent magmas of calcalkaline series of the High Cascades and Oregon plateaus, Scottish Caledonian, Crater lake, Paricutin, and Southern California Batholith.

					18		
	1	2	3	4	5	6	7
SiO ₂	55.07	55.3	54.4	56.3	54.9	54.0	49.56
Al ₂ O ₃	17.10	17.0	16.5	17.4	18.1	17.6	17.88
Fe ₂ O ₃	3.38	3.1	1.6	1.9	3.9	17	2.78
FeO	5.24	4.0	6.4	6.3	3.8	6.0	7.26
MgO	5.01	6,1	6.6	4.7	5.4	7.0	6.97
CaO	8.75	7.5	7.8	7.9	8.6	8.1	9.99
Na ₂ O	2.63	3.3	3.5	3.1	3.4	36	2.90
K ₂ O	1.32	2.1	1.7	1.2	0.8	0.7	0.73
TiO ₂	0.76	1.3	1.0	1.1	0.8	1.0	1.53
MnO	0.17	0.1	0.2	0.1	0.1	0.1	0.14
P ₂ O ₅	0.21	0.4	0.3	0.1	0.2	0.2	0.26
	and the second sec					+ 1.1	

1. Kohistan Sequence.

2. Comrie diorite complex.

3. Scottish Caledonian.

4. Southern California batholith.

5. Crater lake.

6. Paricutin, Mexico.

7. High Cascades and Oregon plateaus.

(Analysis 2. Majid, 1974; analyses 3 to 6 from Nockolds and Allen, 1953. table 8. analysis 7. from Water, 1962. table 9, also quoted by Best 1969, table 1.) During the initial stages of closer of Tethys, the oceanic floor was dragged along a northword dipping benioff zone under an arc (Tahirkheli et. al. 1979). With the descent of the plate, rocks within the slice of the oceanic crust must have been subjected to phase transformations due to the instability of the crustal silicates at high pressure. The plagioclase, olivene and pyroxene within the basic rocks of the descending oceanic crust (pillow lavas of layer 2 and rocks of layer 3—dyke swarms and layered gabbros; Hill, 1957; Nafe and Drake, 1957; Raitt, 1963; Cann and Vine, 1966; Melson, Thomson and Van Andel, 1968; Dewey and Bird, 1970; Oxburg, 1967) must have been replaced by eclogitic assemblages (Green, 1967; Yoder and Tilley, 1962) with increased depth.

Green and Ringwood (1968 a) have demonstrated that at 25-40 Kbars pressure and in the absence of water, andesite is the low melting fraction of quartz eclogite with a composition similar to basalt found in association with the calc-alkaline series. Partial melting at about 100 Km. depth of the basic material of the oceanic crust along the benioff zone, after undergoing phase transformation, must have provided liquids for the calc-alkaline plutons intruded into the arc before the suturing and collision of the arc with the indian continent.

The ultramafic rocks with mantle densities, exposed in the lower portion of the Kohistan sequence can not be related to the calc-alkaline series in the proposed scheme. In fact these can best be explained in terms of tectonic rise of the upper mantle slices as suggested by Tahirkheli *et. al.* (1979). According to these authors the Kohistan sequence represents an ideal cross section of the crust of a calc-alkaline arc having tectonically emplaced slabs of the upper mantle material in the lower portion and lavas and sediments (comparable to the volcanics of presently active arcs) in the upper most part.

Nature of the Liquid

On the silica variation plot (fig. 2) most of the oxides in the analyses of the studied samples exhibit a smooth variation trend from 55% SiO_2 onwards. Data points of few samples, having less than approximately 55% SiO_2 in the analysis, lie within a region of scattering. Such rocks can be linked with the diorite-granodiorite series by a process of selective crystal accumulation.

FIG. 6. ALKALI-SILICA DIAGRAM FOR THE KALAM DIORITES (SOLID CIRCLES) AND DIORITES FROM COMRIE COMPLEX, SCOTLAND. (CROSSES)

TEMPERATURE (Č)

FIGURE 7. Summary of the compositional affinities of the granite family for various pressurtemperature-depth regimes as deduced from experimental results. The two arrows show decreasing normative quartz and increasing albite/orthoclase ratios. (after Brown, 1973).

Nockolds (1941) while studying the igneous rocks from the Garabal Hill-Glen Fyne complex, Scotland, related the associated gabbro and minor ultrabasics to the calc-alkaline series of the complex by the same process rather than giving them a parental status in the series. In the region of continuous variation analysis no. 8 (table 4) is the most basic composition and it has been considered closely approximating to the original liquid. It has been compared with the compositions of the original liquids of some important calc-alkaline series reported by Nockolds and Allen (1953, table 8) and Best (1969, table 1) in table 9. The assumed original liquid composition of the Kohistan calc-alkaline suite resemble very closely to the listed compositions.

The diorites and related rocks from the studied area, however, differ from the Caledonian calc-alkaline series in respect of the alkali-silica relations. The compositions of the analysed samples from the Kohistan zone lie within the field of the Japanes tholeiites (Kuno, 1969) on the alkali vs. silica diagram while diorites from the Scottish Caledonian cale-alkalic series (e. g. from the Comriediorite complex, Majid, 1974) plot in the high-Al. basalt area (fig. 6)

REFERENCES

- BEST, M. G. 1969. Differentiation of calc-alkaline magmas. Proc. Andesite Conference. Oregon-Dept. Min. Ind. Bull. 65, 65.
- BROWN, G.C. 1973. Evolution of granitic magmas at destructive plate margins. Nature. Phy. Sci. 241, 26.
- ---& FYFE, W. S. 1970. The production of granitic melts during ultrametamorphism. Contri. Min. Pet. 28, 310.
- CANN, J. R. & VINE, F. J. 1966. An area on the crest of the Earloberg Ridge: Petrology and magmatic Survey. Phil Trans. R. Soc. A. 259. 198.
- DALY, R. A. 1933. Igneous rocks and the depths of the earth. McGraw-Hill Book Co. N. Y.
- DEER, W. A. 1935. The Cairnsmore of Carsphairn igneous complex. Geol. Soc. London. Quart. Jour. 91, 47.
- DEWEY, J. F. & BIRD, J. M. 1970. Mountain belts and the new global tectonics. J. Geophysics. res. 75. No. 14. 2625.
- GANSSER, A. 1964. Geology of the Himalayas-289 P., 1 carte h. t., Interscience London.

- GREEN, D. H. 1967. The genesis of basaltic magmas. Contri. Min. Pet. 15, 103.
- --& RINGWOOD, A. E. 1968a. Genesis of calc-alkaline igneous rock series. Contri. Min. Pet. 18, 105.
- GULSON, B L., LOVERING, J. F., TAYLOR, S. R. & WHITTE, A. J. K. 1972. Hig-K diorites, their place in the calc-alkaline association and relationship to andesites. Lithos, 5. 260.
- HILL, M. N. 1957. Recent geophysical exploration of the ocean floor. Proc. Phys. Chem. Earths. 2, 129.
- JAN. M. Q. 1977. The mineralogy, geochemistry, and petrology of Swat Kohistan. N. W. Pakistan. Unpub. Ph. D. thesis. Univ. London.
- ---& MIAN, I. 1971. Preliminary geology and petrography of Swat Kohistan. Geol. Bull. Univ. Peshawar 6, 4-32.
- KHALIL, M. A. & AFRIDI, A. G. 1973. Geology of the Deshai Diwanghar area, Swat. Unpub M. Sc. thesis. Univ. Peshawar.
- KUNO, H. 1950. Petrology of the Hakone volcano and adjacent areas, Japan. Bull, Geol. Soc. Am. 61, 957.
- MAJID, M. 1974. Mineralogy and petrology of the Comrie diorite. Unpub. Ph. D. Thesis. Univ. Manchester.
- MARSTON, R. J. 1971. The Foyers granitic complex. Inverness Shire. Scotland. Geol. Soc. London. Quart. Journ. 126, 331.
- MARTIN, N. R., SIDDIQUI, S. F. A. & KING. B. R. 1962. A Geological reconnaissance of the region between the Lower Swat and Indus Rivers of Pakistan-Geol. Bull. Punjab Univ., 2, 1-13.
- MELSON, W. G., THOMSON, G. & VAN ANDEL, T. H. 1968. Volcanism and metamorphism in the Mid-Atlantic Ridge. 22°N. Latitude. J. Geophy. Res. 73. 5925.
- NAFE, J. E. & DRAKE, C. L. 1957. Variation in depth in Shallow and deep water marine sediments of porosity, density and in velocities of compressional and shear waves. Geophysics 22, 523.

- NOCKOLDS, S. R. 1941. The Garabal Hill-Gien Fyne complex. Geol. Soc. London-Quart. Jour. 96, 451.
- ----& ALLEN, R. 1963. The geochemistry of some igneous rock series. Part. 1. Calc-alkaline rocks. Geochim. Cosmochim Acta. 4. 105.
- OXBURGH, B. R. 1967. Mantle convection and the thermal requirment of various crustal phenomena. Geophys. J. R. ast. Soc. 41, 403.
- TAHIRKHELI, R. A. K., MATTAUER, M., PROUST, F. & TAPPONNIER, P. 1979. The India Eurasia Suture Zone in northern Pakistan. Some new data for an interpretation at plate scale. Geodynamics of Pakistan. G.S.P / Univ. Cincinnati. U.S.A. 25.
- TAYLOR, S. R. 1968a. Geochemistry of andesites. Proc. IAGC Symposium on origin and distribution of the elements. section V. Pergamon.
- TILLY, C. E. 1950. Some aspects of magmatic evolution, Geol. Soc. London. Quart. Jour. 106, 37.
- TUREKIAN, K. K. & KULP, J. R. 1956. The Geochemistry of Strontium. Geochim, Cosmochim. Acta. 10, 245.
- WATER, A. C. 1955. Volcanle rocks and the tectonic cycle. In. Crust of the earth (ed. A. POLDERVAART). Geol. Soc. Am. Spec. Papers 62, 703.
- WILCOX, R. E. 1954. Petrology of the Paricutin volcano, Mexico. U. S. Geol. Surv. Bull. 965-C.
- WILLSON, N. D. 1955. A new method for the determination of ferrous iron in rocks and minerals. Bull. Geol. Surv. G. B. 9; 56.
- -----The micro determination of ferrous iron in silicate minerals by a volumetric and colourimetric method. Analyst 85, 823.
- YODER, H.S. & TILLEY, C.E. 1962. Origin of basaltic magmas, an experimental study of natural and synthetic rocks. J. Pet. 3, 342.