Delineation of suitable areas for ground water recharge facilities in district Dera Ismail Khan, Khyber Pakhtunkhwa using geospatial approach

Samiullah Riaz¹*, Talha ahmad¹, Abid Sarwar¹, Shazia Gulzar¹, Muhammad Ali², M.Sufyan Qazi², Muhammad Akmal Sardar¹, Muhammad Ismail khan¹, Aftab Shahid¹, Amir Hayat¹, Muhammad Hamza¹, Saad Khan²

¹GIS Lab, Directorate General Soil and Water Conservation, Peshawar, Pakistan ² National Centre of Excellence in Geology, University of Peshawar, Pakistan *H.Samiullahriaz4444@gmail.com

Water acts as the most necessary feature in daily lives which is reducing at a higher rate in both rural and urban areas, and the reason is rapid growth in farming and household necessities. Hydrological modelling subsurface water acts as the most important feature because of shortage. The research is based on both lab work and field work. A field survey has been conducted to verify all the results. Different aquifer recharge influencing parameters i.e., LCLU, rainfall, Lineament density, Drainage density, Elevation, population density, Watertable, slope, geology and soil texture were selected. Two techniques were used in this study i.e., mathematical approach and fuzzy overlay. Results from the weighted overlay analysis using mathematical approach revels that 78.20 km² area having very high Potential, 786.03 km² area having high, 1175.23 km² moderate and 330.07 km² having poor potential for recharge. On the other hand, in the fuzzy overlay technique same number of parameters were used in fuzzy overlay analysis. Result from the fuzzy overlay analysis revels that 90.80 km² area is categorized as very high, 580.56 km² area as high, 1210.32km² as moderate and 407.78km² having poor recharge potential. This work is of significant importance for the soil and water conservation strategies in order to harvest and recharge the aquifer.

Keywords: Remote Sensing; Rainwater Harvesting; Conservation; ArcGIS; MIF