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Convergent zones play an essential role in the global carbon dioxide (CO2) balance of the Earth (Kerrick 

and Caldeira, 1998). In addition to their role of atmospheric CO2 sink through weathering (Gaillardet et 

al., 1999), large orogens are also the location of the production and release of CO2-rich fluids (Irwin and 

Barnes, 1980). Major active fault zones appear therefore as a dynamically complex system where fluid 

circulation, crustal permeability and possibly earthquake occurrence might be interrelated (Ingebritsen and 

Manning, 2010; Manga et al., 2012). The Himalayas offers a privileged natural laboratory where this 

essential dynamical coupling can be studied. High seismic activity is concentrated on a mid-crustal ramp 

located in the Main Central Thrust (MCT) zone on the Main Himalayan Thrust accommodating the 2 cm 

year-1 convergence (Ader et al., 2012), where fluid occurrence might explain the high electrical 

conductivity observed by magneto-telluric sounding (Lemonnier et al., 1999). Seasonal variations of 

seismicity (Bollinger et al., 2007) and deformation (Chanard et al., 2014) can be accommodated by 

surface hydrological forcing, possibly leading to fluid overpressures at depth. Direct evidence of the fluid 

release in the MCT zone has been given recently. First, the high alkalinity of hot springs was observed to 

contribute to tremendous CO2 fluxes in the main rivers (Evans et al., 2004). The high carbon isotopic 

ratios of the hot springs suggested the presence of a metamorphic decarbonation source at depth and of 

massive CO2 degassing (Becker et al., 2008; Evans et al., 2008). Second, direct evidence of CO2 emission 

from the ground was discovered in the Syabru-Bensi hydrothermal system (SBHS), central Nepal (Perrier 

et al., 2009), where it was found to be associated with a radon-222 signature, a valuable asset for long-

term monitoring (Girault et al., 2009), and was subsequently mapped in detail (Girault et al., 2014),. In 

this study, we present the results of systematic search and measurement of CO2 release from the ground in 

the vicinity of other significant hot springs from western to eastern Nepal (Figure 1). 
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Figure 1. Overview of sites in the Nepal 

Himalayas. Main Central Thrust (MCT), 

Main Frontal Thrust (MFT) and highest 

summits (closed triangles) are shown. 

Earthquakes epicenters are taken from the 

1995-2005 catalogue (Nepal National 

Seismological Centre). The inset shows 

location of sites in the upper Trisuli 

Valley. SBHS corresponds to the Syabru-

Bensi hydrothermal system in central 

Nepal. 
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Gaseous CO2 and radon-222 (radioactive gas with half life of 3.8 d) release from the ground was 

investigated along the MCT zone in the Nepal Himalayas and quantified using the accumulation chamber 

technique. From >2200 CO2 and >900 radon-222 flux measurements in the vicinity of 13 hot springs from 

western to central Nepal, we obtained total CO2 and radon discharges varying from 10-3 to 1.6 mol s-1, and 

from 20 to 1600 Bq s-1, respectively. We observed a coherent organization at spatial scales of 10 km in a 

given region (Figure 2) (Girault et al., submitted): low CO2 and radon discharges (Group III) around 

Pokhara (midwestern Nepal) and in the Bhote Kosi Valley (east Nepal); low CO2 but large radon 

discharges (Group II) in Lower Dolpo (west Nepal); large CO2 and radon discharges (Group I) in the 

upper Trisuli Valley (central Nepal). 

 

  
 

This large-scale organization suggests different gas transport mechanisms. While the simultaneous degassing 

of dissolved CO2 and radon from hot spring waters can be considered in Lower Dolpo, in the upper Trisuli 

Valley, by contrast, the CO2 and radon discharge can likely be the evidence at the surface of a gaseous-

dominated transport through a large-scale fault network (Girault and Perrier, 2014). A 110-km-long CO2-

producing segment, with high carbon isotopic ratios indicating most likely metamorphic decarbonation, is thus 

evidenced from 84.5°E to 85.5°E, which suggests interactions between geological conditions, crustal 

permeability, and, possibly, large Himalayan earthquakes. This hypothesis needs to be tested in detail. First, 

we need a better understanding of the mechanisms producing metamorphic CO2 in the Himalayas (Groppo et 

al., 2013). Then, we need a more comprehensive mapping of CO2 emission in the Himalayas. 
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Figure 2. Characteristics of CO2 

degassing from the ground and from 

water along the Nepal Himalayan 

arc: (a) carbon isotope ratios of the 

gaseous CO2 from the ground and 

from bubbles in springs, (b) carbon 

isotope ratios of water (dissolved 

inorganic carbon), (c) radon 

concentration in spring waters, and 

(d) CO2 and radon discharges from 

the ground. Data include original 

and published works. Epicenter and 

rupture length of the two last 

megaquakes (1505 and 1934) are 

displayed. 
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